
Summary of an analysis of the

MACH Magneto hydrodynamic

computer simulation.

February, 2000

Timothy H. Kaiser, Ph.D.

San Diego Supercomputer Center

University of California San Diego

Abstract

This report documents the study of the Magneto hydrodynamic (MHD) computer simulation

MACH performed by the San Diego Supercomputer Center (SDSC) for the Air Force Research

Laboratory-Phillips Research Site (AFRL). The goals of the involvement of SDSC were,

performance improvement, and portability improvement. Gains in performance are discussed.

Suggestions for increasing the portability of program are also presented. The report also summarizes

what was learned about MACH and what was learned about the Programming Environment and

Training (PET) Program process.

Table of Contents

1 Overview of report...1
2 Introduction..1
2.1 Code overview...1
2.2 People ..2
2.3 Goals..3
2.4 History ...4
3 Performance studies...6
3.1 Profiling...6
4 Performance improvement efforts...8
4.1 Compile line options..9
4.2 Routine restructuring ...9
4.3 OpenMP...11
4.4 MPI ..12
5 Portability ..18
5.1 Reducing the number of C routines...18
5.1.1 Random Numbers..19
5.2.2 Floor and Ceiling...20
5.3.3 Timing..23
5.2 Memory allocation...24
5.3 Numerical precision...30
6 Lessons learned..32
6.1 About MACH ..32
6.2 About the process ..33
Appendix 1. New version of HYDITBLK...35
Appendix 2. New versions of HYDBCS.F and BFLDBCS.F ...42
Appendix 3. Fortran 90 dynamic memory management routine based on a splay tree...............62
References..69

List of figures and tables
Figures
Figure 1. Partial listing of the routine HYDBCS showing communication patterns.....................15

Figure 2. Pseudo code for calling MPI persistent communication routines.16

Figure 3. Random number generator source Code and example run...20

Figure 4. Fortran versions of CCEIL and CFLOOR along with a test program that calls both the
C and Fortran versions...22

Figure 5. Output from the CCEIL and CFLOOR program showing that the Fortran versions of
the floor and ceiling routines are faster than the C subroutines...23

Figure 6. Example program showing how to use the Fortran 95 routine CPU_TIME with output
on SDSC SP that is loaded with other tasks. Note that the times reported by the program and
timex (user+sys times) are essentially the same. ...24

Figure 7. Simple program illustrating the usage of Cray pointers...26

Figure 8. Simple program showing the usage of Fortran 90 pointers..27

Figure 9. Simple program combining the usage of Cray and Fortran 90 pointers.........................28

Figure 10. Program illustrating the usage of selected_real_kind to obtain portable numerical
precision. ..31

Tables
Table 1. Grid size, vector size and run time on Cray T90. Shows strong dependency of vector
size on grid size. ...7

Table 2. MACH profiling results on 15 SP processors and high-velocity gas-puff Z-pinch inputs..
...8

Table 3. Run times with various compile options for HYDITBLK. ...9

Table 4. Run times with various modificaitons to HYDITBLK and compile options.10

Table 5. Additional run times with various modificaitons to HYDITBLK and compile options....
...11

Table 6.Time spent in MPI_Wait for the routines BFLDBCS and HYDBCS.15

1 Overview of report

This report documents the study of the Magneto hydrodynamic (MHD) computer simulation

MACH performed by the San Diego Supercomputer Center (SDSC) for the Air Force Research

Laboratory-Phillips Research Site (AFRL). The report begins with a code overview, a lists of

people involved in the study, and a history of the involvement of SDSC with the MACH

simulation. The goals of the involvement of SDSC, performance improvement, and portability

improvement are discussed. While SDSC made only small gains in the performance of MACH,

much was learned that can be incorporated into future versions to increase performance and

improve portability. These topics are discussed in the “Performance studies” and “Portability”

sections of this report. The last section of the report summarizes what was learned about MACH

and what was learned about the Programming Environment and Training (PET) Program process.

The appendices contain source listings for some of the routines that were modified in the course

of the study and a listing for a dynamic memory allocation routine written in Fortran 90.

2 Introduction

2.1 Code overview

MACH is a general-purpose time-dependent Magneto hydrodynamic (MHD) computer

simulation for problems in complex geometries. There is a 2-1/2D version, MACH2, and a 3D

version, MACH3. MACH simulates electrons and ions interacting with magnetic fields, radiation,

elastic stress, and fluid flow using a variety of equations of state.

The domain is decomposed into a set of logically rectangular blocks, The blocks are patched

1

together to form a problem domain that is discretized into hexahedral cells that form the

computational grid (or mesh). Block structuring also allows the 3-D version to run on distributed

memory parallel computers. MACH is an Arbitrary Lagrangian-Eulerian (ALE) code. The ALE

hydrodynamic algorithm allows the code to be run in a purely Eulerian (grid at rest in the

laboratory frame) or Lagrangian (grid at rest in the fluid frame) mode. Moreover, MACH has an

optional adaptive mesh generator. If this option is chosen, the code generates a new mesh that is

based on the old mesh during each time step by solving finite difference equations derived from

the Euler equations of a variational problem. According to the user-specified values of coefficients

of that problem, the new mesh has various mixtures of smoothness, orthogonality, and specified

relative cell volume. This facilitates the use of qualitatively different meshes for different phases

of the same problem by allowing smooth change from one kind of grid to the other as the

computation progresses. By having the mesh move independently of the fluid, the user is better

able to manage the code's use of computational resources.

MACH is written primarily in Fortran 77 with Cray extensions and some C. The primary

Cray extension used is the Cray pointer data type. Pointers are used for dynamic memory

management. The parallel versions of MACH uses MPI for message passing. One of MACH’s

nice features is that is has been documented, and a reference manual is available.

2.2 People

This report documents the study of the Magneto hydrodynamic (MHD) computer simulation

MACH performed by the San Diego Supercompter Center (SDSC) for the Air Force Research

Laboratory-Phillips Research Site (AFRL). The principal researchers associated with MACH are

Dr. Robert Peterkin, Jr., and Capt. Laurence Merkel, Ph.D. of AFRL, Dr. Michael H. Frese of

NumerEx, and Shari Colella also of NumerEx. The principal researcher for SDSC was Dr.

2

Timothy Kaiser. Dr. John Boisseau is the manager of the PET efforts for SDSC.

The principal authors of MACH are Robert Peterkin and Michael Frese. Shari Colella

performed much of the parallelization work on MACH. Capt. Merkel was the point of contact

for the study at ARFL. Shari Colella and Laurence Merkel are no longer associated with the

project and have moved to different organizations.

2.3 Goals

The MACH code has contibuted, and will continue to contribute, to the understanding of a

wide variety of high-density plasma configurations including: plasma opening switches, explosive

magnetic generators, inertial-confinement fusion and alternative fusion concepts, compact toroid

formation and acceleration schemes, gas and solid density z-pinch implosion physics, laser-target

interactions, dense plasma focus designs, and plasma thruster designs.

The two primary goals of the analysis of MACH were to provide suggestions to improve

both the performance (speed) of the simulation and the portability of the source code.

The interest is primarily in improving the speed of the parallel version of MACH.

An increase of performance in parallel applications can be obtained by improving the single

processor speed, having a better load balance, and reducing the cost of communication. This

study focused on analyzing the cost of communication.

Increasing the portability of the program results in source code that can be more easily

moved from one platform to another with fewer changes. Typically portable programs have few

machine-specific routines, and makefiles are thus simpler. Because there is a reduction in

machine-specific routines, portable programs tend to be easier to maintain. A programming

technique that reduces the portability of source code is the use of compiler-specific extensions.

The primary compiler-specific extension used in MACH was the Cray style pointer. One area

3

that is problematic in creating portable programs is inter-language calls. Thus this study looked

at reducing the number of C subroutines. The use of Cray pointers does directly support

dynamic memory allocation. A C subroutine is included with MACH to support dynamic

memory allocation. This is one of the routines that can be replaced with a portable Fortran 90

subroutine. This also facilitates the total removal of the Cray pointers.

2.4 History

This section provides a rough time-line of the work performed on the MACH program and

the interactions between SDSC and the principals in New Mexico.

On September 1 of ‘98, Tim Kaiser and John Boisseau traveled to AFRL to discuss MACH

and the PET effort with Peterkin, Merkel, Frese, and Colella. A description of the application

was presented by Peterkin and Frese. It was decided that SDSC’s effort would focus on improving

performance and portability.

In mid-September, MACH was made available for download by SDSC. Documentation and

example runs were provided with the distribution. The program was compiled and run on the

SDSC Cray T90 and IBM SP. Simple MACH profiling and scaling runs were performed. There

were some typographical errors in the T90 makefile. The text -agress was replaced with -Oaggress.

This did not make a significant difference in the run time.

In early October, a description of SDSC program goals was created based on the early

runs and analysis of the application. Again this stressed the desire to increase portability and

performance. SDSC was provided with a new set of inputs to use for the study.

In November it was discovered that the inputs that were provided were not compatible with

the current version of the program. A simple change suggested by Colella remedied the problem.

Additional profiling was performed on the application to determine the time-dominant routines.

4

Both with the initial data sets and the data set provided in November, it was discovered that the

time-dominant routines were HYDITBLK, HYDFORCE, and STRAIN. One thing that was

noticed in these routines was the presence of a large number of redundant operations. The same

value was calculated several times in a do loop. Removal of some of these redundancies slightly

increased performance. In addition, to improve performance, the qstrict option was removed

from the IBM compile line for HYDITBLK. Studies were also performed to assess the effectiveness

of using OpenMP directives to perform automatic parallelization.

In December, portability issues related to numerical precision were discussed with MACH

researchers. In particular, it was recommended that the Fortran 90 selected real kind facility be

used to specify precision instead of declaring variables, real*8, or double precision.

In February, Colella and Merkel traveled to SDSC to discuss the work that had been done to

date. A new version of MACH had been released that they agreed to provide to SDSC. In early

March the new version was successfully compiled. Unfortunately, the new version was not

compatible with the old input values. After several iterations of data sets, the new version was

run with the new inputs in mid-March.

The study in April and May concentrated on quantifying and reducing communication cost.

The MACH source code was modified to track the number of communication calls and the

amount of time spent in waiting for communications to complete. MACH performs a large

number of distinct communication calls relative to the amount of computation. The MACH

researchers have stated that the communication pattern is necessary for the correct functioning of

the numerical algorithms used in the program.

Different communication strategies (that maintained the same semantics) were tried to reduce

the communications. After a hiatus, additional work on communication strategies was performed

5

in August.

In August and September, portability issues were examined. Several Fortran 90 subroutines

were written to replace C routines. Most notably, a routine was written using Fortran 90 to

replace the C dynamic memory allocation routine. The C routine was used to allocate memory

associated with the Cray pointers. The Fortran 90 routine could be easily modified to work with

Fortran 90 style pointers instead of Cray pointers. This facilitates an easy conversion from Cray

to Fortran 90 pointers in MACH.

3 Performance studies

3.1 Profiling

The initial profiling of MACH was done in late 1998 using the inputs first provided by

Colella. The MACH research team indicated that the first profiling results were not indicative of

typical because the inputs exercised few of the “physics” routines.

Nevertheless, using the inputs provided, MACH was run using the hardware performance

monitor on the Cray T90, and the 3d version was run under the performance monitor on the IBM

SP. On the T90 the routine HYDITBLK was the largest single user of time at 36.0%. The next

largest user of time came in at 6.5%. On the SP the largest users of time were HYDITBLK,

HYDFORCE, and STRAIN, with 30.2%, 17.5% and 8.8% respectively, for a total over 56.5%.

Thus optimization efforts were concentrated in these routines.

MACH was written for good vector performance, and most of the loops within HYDITBLK

vectorize. The loop size is determined by the input variable icellsg. There is a very strong

correlation between icellsg and the average vector length on the T90, with longer vector lengths

providing better performance. Calculations were run using grids of 64 x icellsg with icellsg

having values of 3,6,12,24,48, and 96.

6

Grid size
64 x ICELLSG Average Vector Size Run time (seconds)
 3 5.67 18.5
 6 8.35 18.9
12 13.69 20.6
24 24.22 23.6
48 44.72 30.2
96 83.94 50.7

Table 1. Grid size, vector size and run time on Cray T90. Shows strong dependency

of vector size on grid size.

Because of the strong dependence of vector size on the value of icellsg it is advisable to

align the grid such that icellsg has the larger value. A problem with a grid size of 10 x 96 will run

faster than one with a grid size of 96 x10.

Additional profile runs were performed after the release in January 99 of MACH version

v9901 and new inputs were provided in March. This final set of inputs provided by Merkel and

Colella was similar to the one used to obtain the results for the paper “Three-dimensional

hydromagnetic simulation of a high-velocity gas-puff Z-pinch.” in Journal IEEE Transactions on

Plasma Science, v27, n1 (Feb, 1999). The inputs were not identical to those used for the paper

because that set required the SESAME equation of state. When Merkel learned that SDSC did

not have access to SESAME, he reworked the inputs to use a simple equation of state.

Profiling was done again using 15 SP processors, the new version of the software, and the

new input. HYDITBLK and HYDFORCE are still the most important routines using 19% and

13% of the CPU time. STRAIN dropped to number 5 on the list of time-consuming routines with

5.2%. MAGISTBK, MAGLBRBK, and MAGCURNT, electrodynamics routines accounted for

7

8.3%, 4.1%, and 3.7%, respectively. This profiling shows that the efforts to increase the efficiency

of HYDITBLK and HYDFORCE are still important, even with an increased utilization of the

electrodynamic simulation capabilities of MACH. Several MPI-related routines also are consuming

larger amounts of time. FMEMCPY (6.1%), CPFROMDEV (2.4 %), and CPTODEVX (2.0%)

are all routines called as part of MPI subroutine calls, indicating that there is a need to look at

optimizing communication in MACH.

 % of CPU time Routine Description

 19.1 HYDITBLK MACH hydro

 13.0 HYDFORCE MACH hydro

 8.3 MAGISTBK MACH electrodynamics

 6.1 FMEMCPY MPI

 5.2 STRAIN MACH hydro

 4.1 MAGLBRBK MACH electrodynamics

 3.7 MAGCURNT MACH electrodynamics

 3.6 HYDACCEL MACH hydro

 3.0 DIVB MACH hydro

 2.4 CPFROMDEV MPI

 2.0 CPTODEVX MPI

Table 2. MACH profiling results on 15 SP processors and high-velocity gas-puff

Z-pinch inputs.

4 Performance improvement efforts

The efforts to improve the performance of MACH were concentrated into four areas: (1)

modifications were made to compile line options, (2) routines were restructured to improve the

single processor performance, (3) OpenMP directive were added to aid in shared memory

8

parallelism, and (4) changes were done to some of the MPI routines to try to improve scalability

and reduce message wait times. Changing compile line options and routine restructuring did

enable a 5.4% reduction in run time. Unfortunately, the other efforts at optimization were not

effective. The efforts are described in the following sections along with thoughts on why they

were not effective.

4.1 Compile line options

The makefile provided with MACH specified the compile line optimization options

-O3 -qstrict

for the IBM SP. The -O3 is a high level of optimization that can change the semantics of the

program. Occasionally this changes the results of a program. The option -qstrict ensures that the

semantics of the program do not change from the compiler optimization efforts. The option

-qstrict was removed from the compile line for the routine HYDITBLK.F, and the option -

qarch=pwr2 was added. This second option enables optimization specific to the particular

processor on which the program is to run. In particular, this enables better utilization of the

second floating point functional unit. The results were compared to those obtained with the

original compile line options. There was a 4.3% reduction in run time. The data used for this

run was a larger version of one of the examples provided with the MACH distribution.

 Compile options Run times
 base line program and makefile 2502
 remove -qstrict add -qarch=pwr2 2393

Table 3. Run times with various compile options for HYDITBLK.

4.2 Routine restructuring

One thing that was noticed in the routines HYDITBLK, HYDFORCE, and STRAIN was the

9

presence of a large number of redundant operations. The same value was calculated several

times in a do loop. Source code modifications were made to remove some of the redundant

operations. There was a total of 5.5% reduction in the run time of the simple example program.

This number is significant, since HYDITBLK accounts for about 20% of the total run time of the

program.

 Source and compile options Run times
 base line program and makefile 2502
 remove -qstrict add -qarch=pwr2 2393
 remove redundant operations from
 HYDITBLK 2365

Table 4. Run times with various modificaitons to HYDITBLK and compile options.

Removing the redundant operations from HYDFORCE and STRAIN did not enable any

further reduction in run times. The introduction of the additional variables required by the

removal of redundant operations reduced the ability of the compiler to perform its automatic

optimization. The new version of HYDITBLK is given in the appendices.

In another series of runs using the sample data set “Eulerian compression of antiparallel 1 T

azimuthal and axial magnetic fields,” significant increases in performance were seen by removing

redundant operations and compiling with -O3 -qarch=pwr2 instead of -O3 -qstrict. For this set of

runs the hardware performance monitor was linked with the MACH program. This enabled the

determination of the usage of the two floating point units within the processor. For the original

version of HYDITBLK, the two floating point units produced 68 and 46 million results per

second, and the run time was 937 seconds. With redundant operations removed the usage went

up to 74 and 51 million results per second, with a run time reduction to 903 seconds. With the

higher-level optimization and removal of redundant operations, the two floating point units

10

produced 76 and 53 million results per second and the run time was 859 seconds. The usage of

the second floating point unit increased 15%, and the run time went down 8%. Portions of the

hardware performance monitor report are shown below.

Original HYDITBLK.F with calls to hpm inserted
 0:Elapsed seconds : 937.2018
 0:FPU0 results/sec : 68.26M F.P. in Math0 :

62524212579
 0:FPU1 results/sec : 46.40M F.P. in Math1 :

42500055717

HYDITBLK.F with calls to hpm inserted and redundant operations taken out of loop 100
 0:Elapsed seconds : 902.9608
 0:FPU0 results/sec : 73.76M F.P. in Math0 :
 60177481065
 0:FPU1 results/sec : 50.69M F.P. in Math1 :

41355861189

Modified HYDITBLK.F with -O3 -qarch=pwr2 instead of -O3 -qstrict
 0:Elapsed seconds : 858.6095
 0:FPU0 results/sec : 76.13M F.P. in Math0 :

61954822761
 0:FPU1 results/sec : 53.39M F.P. in Math1 :

43452612282

Table 5. Additional run times with various modificaitons to HYDITBLK and compile

options.

4.3 OpenMP

OpenMP directives were added to the loops of HYDITBLK to distribute the calculation to

various processors of the T90. This was ineffective. Calculations were run with a grid size of 64

x 256. The best time without the directives was 173.932 seconds and 169.290 seconds with the

directives. With smaller grid sizes the program ran slower using OpenMP. The loops vectorize

11

well and distributing them to multiple processors just adds overhead.

OpenMP was also tried on shared memory multiprocessor SP nodes. Again this was ineffective

because the overhead of distributing the loops outweighs the gain from going to multiple processors.

OpenMP might be effective if it can be used at higher level in the call chain of the program.

MACH is an object-oriented program in the sense that numerical calculations or operations are

performed on blocks of data. Each block represents a section of the grid. Typically, the grid is

broken up into N blocks where N is the number of processors. MPI routines are used to pass

boundary conditions between blocks as the calculation progresses. Some hybrid machines have

M shared memory processors per node. One programming paradigm used on such machines is

to have M OpenMP threads running, one for each processor, on each of the N nodes. Communication

between nodes is still done using MPI. With some effort MACH, could be restructured to work

in this paradigm. Blocks could be automatically be broken into M subblocks, and the calculation

for each subblock would be performed on individual processors under the control of OpenMP

threads using OpenMP synchronization primitives. This was not tried in this research effort

because it may have involved a major restructuring of the program.

4.4 MPI

The tracing of MACH performed on the SP indicated that a significant amount of time was

being spent in MPI communication-related calls. As the program is moved to machines with

larger numbers of nodes, the cost of communication will rise. This limits the parallel scalability

of the program.

The communication in MACH is used to pass ghost cells between processors. Most of the

subroutines in MACH that perform communication have the same pattern using the nonblocking

MPI calls MPI_Isend and MPI_Irecv. In the MACH subroutines there is a nested do loop. The

12

outer loop moves over the grid block number, and the inner loop moves over edges 1-4. In the

inner loop a test is done to determine if the given edge of the given block is a problem boundary.

If so, the boundary conditions are set as appropriate. If not, the ghost cells must be updated. If

the block that holds the information for the ghost cells is on the same processor, the update can

be done with a copy. If the block that holds the information for the ghost cells is on a different

processor, the update must be done with a communication routine. The communication involves

both a send and receive. The receive is posted using the call MPI_Irecv, and the send is posted

using MPI_Isend. Note that these calls are asynchronous. The communication associated with

the calls can occur at a later time. Running through the nested do loop will post the communication

associated with every edge of every block. To ensure that the communication has completed, a

call is made to MPI_Waitall after exiting the nested do loop.

The subroutine HYDBCS illustrates this pattern well, as shown below. Line 19 is the start

of the outer do loop that loops over blocks. The loop over the edges of the blocks starts at 23.

Lines 27 to 50 handle boundary cells. Lines 56 to 62 handle the case where two adjacent blocks

are on the same processor and no communication is required. The lines 65 to 71 handle the case

where communication is required. The subroutines with “rcv” in the name contain calls to

MPI_IRecv and the subroutines with “snd” in the name contain calls to MPI_ISend. The

MPI_Waitalls associated with these sends and receives are in lines 83 and 84, outside of the do

loop.

1 subroutine HYDBCS
2
3 c-----set ghost cell values of p and q according to boundary type
4
5 cdir$ nolist
6 include 'common.h'
7 include 'bccommon.h'
8 include 'inputcom.h'
9 include 'pointer.h'
10 include 'celcptrs.h'
11 include 'parallel.h'
12 cdir$ list

13

13

14 c-----ghost cell data creation
15
16 irrqst = 0
17 isrqst = 0
18
19 do 10 lblk = 1, nblk
20 if(procblk(lblk).eq.myrank) then
21 call setblk
22 c-------- Code in this loop DOES not and MUST not reference array

elements
23 do 100 i=1,4
24 ibdry = iproseq(i,lblk)
25 lnbr = knbr(ibdry,lblk)
26
27 if (probc(ibdry,lblk) .eq. 'specfied') then
28 c from to range
29 call bcpntrs(ibdry,none,none,this,ghst,all,cell)
30 call bcsetvf(p3d,q3d,pflow(ibdry,lblk),zero)
31 call bcseti(material,nmatbc(ibdry,lblk))
32 call bccpysc(opacr3d,opacr3d)
33 elseif (probc(ibdry,lblk) .eq. 'r2extrap') then
34 c from to range
35 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
36 call bcxtcsc(p3d,rc,p3d,rc,2)
37 call bcxtcsc(q3d,rc,q3d,rc,2)
38 call bccpyi(material,material)
39 call bccpysc(opacr3d,opacr3d)
40 elseif (probc(ibdry,lblk) .eq. 'contnutv' .or.
41 % probc(ibdry,lblk) .eq. 'wall' .or.
42 % probc(ibdry,lblk) .eq. 'axis' .or.
43 % probc(ibdry,lblk) .eq. 'ablation') then
44 c from to range
45 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
46 call bccpyvf(p3d,q3d,p3d,q3d)
47 call bccpysc(opacr3d,opacr3d)
48 call bccpyi(material,material)
49 elseif (probc(ibdry,lblk) .eq. 'vacuum') then
50 c********** need to put anything else in to be zeroed for the vacuum

stuff?
51 c from to range
52 call bcpntrs(ibdry,none,none,this,ghst,all,cell)
53 call bcsetvf(p3d,q3d,zero,zero)
54 elseif ((lnbr .ne. 0) .and.
55 % (probc(ibdry,lblk) .eq. ' ')) then
56 if(procblk(lnbr).eq.myrank) then
57 call setnbrb(lnbr)
58 c from to range
59 call bcpntrs(ibdry,nebr,edge,this,ghst,all,cell)
60 call bccpyvf(p3nbr,q3nbr,p3d,q3d)
61 call bccpysc(opacrnbr,opacr3d)
62 call bccpyi(matnbr,material)
63 else
64 c from to range
65 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
66 call bcrcvvf(p3d,q3d,ibdry,5,bdyalcel(ibdry,lblk))
67 call bcsndvf(p3d,q3d,ibdry,5,bdyalcel(ibdry,lblk))
68 call bcrcvsc(opacr3d,ibdry,31,bdyalcel(ibdry,lblk))
69 call bcsndsc(opacr3d,ibdry,31,bdyalcel(ibdry,lblk))
70 call bcrcvi(material,ibdry,32,bdyalceli(ibdry,lblk))
71 call bcsndi(material,ibdry,32,bdyalceli(ibdry,lblk))
72 endif
73 else

14

74 call stopm3('hydrobc')

75 endif
76 100 continue
77
78 endif
79 10 continue
80
81 c-----wait on the receives and sends from the communication
82 c-----in bcrcvsc/vf
83 if(irrqst.gt.0) call MPI_Waitall(irrqst,arreqst,status,ierror)
84 if(isrqst.gt.0) call MPI_Waitall(isrqst,asreqst,status,ierror)

Figure 1. Partial listing of the routine HYDBCS showing communication patterns.

As stated above, this type of communication is common in MACH, looping over blocks and

edges followed by MPI_Wait calls. There are 62 such sections of code with 124 calls to MPI_Waitall.

In order to determine the communication pattern in MACH, source was added to the program to

track the number of times each MPI_Waitall is called and the time spent in the wait.

This version of MACH was run using 15 and 60 processors using the final data set provided

by Merkel and Colella, modified to run on 60 processors as needed. In a 714 second 188 cycle

run on 60 processors, there were 78,882 calls to MPI_Wait on each processor, with 194 seconds

spent in the MPI_Wait subroutine. Two routines accounted for a large portion of the wait time,

BFLDBCS.F and HYDBCS.F. These calls accounted for over 114 seconds. The table below

shows the times spent in the two MPI_Waitall calls in each of these routines.

Time Calls Routine
42.29 5390 BFLDBCS.F (first call)
28.18 5390 BFLDBCS.F (second call)
26.42 2394 HYDBCS.F (first call)
17.56 2394 HYDBCS.F (second call)

Table 6.Time spent in MPI_Wait for the routines BFLDBCS and HYDBCS.

Reducing the wait time associated with these two subroutines could improve performance

and scaling.

15

MPI has a concept called persistent communication. Persistent communications can be used

when a collection of processors repeats a communication over and over again, that is, sending

and receiving a particular set of arrays to/from a particular set of processors. The MPI library

can be told to “remember” the communication pattern - which data elements go to which

processors. The communications are often faster than normal sends and receives because setting

up the communication needs to occur only once.

To set up a persistent communication, the routines MPI_SEND_INIT and MPI_RECV_INIT

are used. They have the same inputs as MPI_Isend and MPI_Irecv. The persistent communication

routines return a “request” that encapsulates a description of the communication. As long as the

size and address of the data buffers do not change, these routines do not need to be called again

for each communication. To actually start the sending of the message, the routine MPI_STARTALL

is called. To complete the communication, MPI_WAITALL is called. In pseudo code this is

!do this at the start of the calculation
if(.not. did_set_up)then
call MPI_SEND_INIT(...)
call MPI_RECV_INIT(...)
did_set_up=.true.

endif
....
.....
!do this every time a message needs to be sent
do i=1,n
call MPI_STARTALL(...)
call MPI_WAITALL(...)

endo

Figure 2. Pseudo code for calling MPI persistent communication routines.

It has been found that for simple grid problems, persistent communications outperform

regular asynchronous communications. This lead to the hope that replacing the MPI_Isend and

MPI_Irecv with persistent communications in MACH could improve performance. The calls

were replaced in HYDBCS.F and BFLDBCS.F. The modified source routines are given in the

16

appendices. Unfortunately, the source code modifications did not produce statistically relevant

improvements in performance.

For BFLDBCS.F it was discovered that the communications violate the assumption that the

addresses of the buffers do not change. They occasionally changed; thus the address of the

buffers needed to be checked on every send. This added complexity and helped prevented a

decrease in the run time. (Similar checks are also shown in HYDBCS.F, but these are there

primarily for bug checking.)

Between successive calls of HYDBCS.F and BFLDBCS.F, other communications are

occurring. It is possible that some of the information saved in connection with the persistent

communication to reduce overhead is discarded when other communications occur. Such behavior

would be system dependent and may deserve further study.

Timing for MPI calls was obtained but there was no information on effective bandwidth.

That is, we know how long it took to send the message, but it is not known how much data was

sent. Comparing the effective bandwidth to the peak could guide the effort in trying to improve

performance.

Tracking MPI performance in MACH was done by manually inserting calls to timing routines.

This was done because of a lack of an effective MPI trace facility. Specifications need to be

developed to aid in the development of tracing tools. For example, in this case it would be

beneficial to know the source line and effective bandwidth associated with MPI calls. Studies

need to be performed to determine what is available from outside vendors that meets the

specifications for performing MPI tracing. Such studies can be performed as part of the Parallel

Tools and Environment effort.

17

5 Portability

There are many variables that effect program portability. We say a program is portable if it

can be moved from one platform to another and be compiled and run and return the same results.

Ideally, the compilation should be performed using makefiles that differ only in the settings that

affect optimization and which compilers and libraries are used. Things that can adversely affect

portability include the use of compiler-specific language extensions, the use of multiple languages

for a single program, and relying on a particular representation for floating point numbers. An

effort was undertaken to address these issues in MACH. The next sections discuss a reduction in

the number of C routines used in MACH, portable memory allocation, and portable numerical

precision to eliminate the dependence on a particular representation for floating point numbers.

5.1 Reducing the number of C routines

MACH is written primarily in Fortran with a small collection of C routines, including the

“main” routine. The main routine reads a collection of environmental variables and calls the

main Fortran routine MACH. The C routine illustrates the difficulty in maintaining and porting

multilaungage programs. Of the 84 source lines in the routine 13, are C ifdefs related to the

differences between machines for inter-language subroutine calls. If the program is ported to a

new architecture, these may need to be modified. The C routine itself is not portable in that it

assumes that the program can read command line options.

Fortran-equivalent routines were written to replace several of the C subroutines. These were

written to serve as examples as to how the remaining C routines could be eliminated. One area

that C routines are used in MACH is IO. These were not addressed because they are all closely

18

related. Before these routines are replaced, a thorough study should be performed on alternate

platform-independent routines.

One set of the C routines that could be replaced are those associated with memory management.

These are also related to the use of Cray points. The Fortran memory management routines are

described in their own section below.

5.1.1 Random Numbers

The C random number routines in MACH are RANDOMIZE.C and RND.C. These in turn

rely on the C library routines drand and srand. drand and srand are not portable in the sense that

they do not return the same sequence of random numbers on all platforms.

 The RANDOMIZE.C and RND.C could be replaced with routines that call the Fortran 90

intrinsic random number routines RANDOM_SEED and RANDOM_NUMBER. The source for

a Fortran 90 module that replaces RANDOMIZE.C and RND.C is given below, along with a

program that tests the performance of the C and Fortran routines. This program was run for

1000000 iterations on the SDSC SP. The Fortran version ran about three times faster. Note that

the Fortran 90 intrinsic random number routines RANDOM_SEED and RANDOM_NUMBER

also do not return the same sequence on all platforms.

module numz
 integer, parameter:: b8 = selected_real_kind(14)
 real(b8),parameter:: pi=3.141592653589793238462643383_b8
 contains
 function frnd() result (a)
 integer, parameter :: isize=1000
 real(b8):: aray(isize),a
 integer count
 data count/0/
 save count,aray
 if(count==0)then
 call random_number(aray)
 endif
 count=count+1
 a=aray(count)
 if(count==isize)count=0
 end function frnd
 subroutine frandomize(my_seed)
 integer my_seed
 integer,allocatable:: seed(:)

19

 integer the_size

 call random_seed(size=the_size) ! how big is the intrisic seed?
 allocate(seed(the_size)) ! allocate space for seed
 do j=1,the_size ! create the seed
 seed(j)=abs(my_seed)+(j-1) ! abs is generic
 enddo
 call random_seed(put=seed) ! assign the seed
 deallocate(seed) ! deallocate space
 end subroutine
 function the_time()
 real(b8) the_time
 integer isec,vals(8)
 call date_and_time(values=vals)
 isec=vals(5)*3600+vals(6)*60+vals(7)
 the_time=real(isec,b8)+real(vals(8),b8)*0.001_b8
 end function
end module
program test_time
 use numz
 real(b8)t1,t2,x,y
 integer iseed,n
 read(*,*)iseed,n
 write(*,*)"seed =",iseed," iterations =",n
 call randomize(iseed)
 x=0.0
 t1=the_time()
 do i=1,n
 x=x+rnd()
 enddo
 write(*,*)x
 t2=the_time()
 write(*,'(" c version dt= ",f8.3)')t2-t1
 call frandomize(iseed)
 x=0.0
 t1=the_time()
 do i=1,n
 x=x+frnd()
 enddo
 write(*,*)x
 t2=the_time()
 write(*,'("f90 version dt= ",f8.3)')t2-t1
end program

Example Run
sp129 % cat mycode.14123.out
 seed = 12345 iterations = 1000000
 500082.467231422081
 c version dt= 0.619
 499904.418514709047
f90 version dt= 0.193
sp129 %

Figure 3. Random number generator source code and example run.

5.2.2 Floor and Ceiling

There are two C routines in MACH, CCEIL and CFLOOR, that return the floor and ceiling

20

of a real number. These two routines are wrappers for the C math library routines CEIL and

FLOOR. The routines CCEIL and CFLOOR each has 4 lines of C source and 9 additional lines

of ifdefs to handle interlanguage calls on different machines.

The FLOOR subroutine returns the largest floating-point integer value not greater than the x

parameter. The CEIL subroutine returns the smallest floating-point integer value not less than

the x parameter.

Fortran 90 has several routines similar to the C routines CEIL and FLOOR. There are

routines called CEIL and FLOOR, but they have different semantics. They return integers.

Also, if the input value to the function is greater than what can be represented by the default

integer type, the returned value is undefined. There is a truncation routine, AINT, and a nearest

integer routine, ANINT. These routines along with an if test can be used to perform the same

function as the CCEIL and CFLOOR routines. A Fortran 90 module that contains the routines

FFLOOR and FCEIL is given below. These routines could be used to replace the routines

CCEIL and CFLOOR C as subroutines. A test program is given,along with the module that

compares the run time of the C and Fortran version of the routines. The output from the program

run on the SDSC SP shows that the Fortran version is faster.

module numz
 integer, parameter:: b8 = selected_real_kind(14)
 real(b8),parameter:: pi=3.141592653589793238462643383_b8
 contains
 function ffloor(x) result (a)
 real(b8)x,a
 a=aint(x)
 if(x .lt. a)a=a-1
 end function ffloor
 function fceil(x) result (y)
 real(b8)x,y
 y=anint(x)
 if(x .gt. y)y=y+1

21

 end function fceil

 function the_time()
 real(b8) the_time
 integer isec,vals(8)
 call date_and_time(values=vals)
 isec=vals(5)*3600+vals(6)*60+vals(7)
 the_time=real(isec,b8)+real(vals(8),b8)*0.001_b8
 end function
end module
program test_time
 use numz
 real(b8)t1,t2,top,bot,dr
 integer iray(1),jray(1)
 real(b8),allocatable::x(:),c1(:),f1(:),c2(:),f2(:)
 logical diff
 read(*,*)n,top,bot
 allocate(x(n),c1(n),f1(n),c2(n),f2(n))
 call random_number(x)
 dr=top-bot
 x=x*dr+bot
 iray=maxloc(x)
 jray=minloc(x)
 write(*,*)"checking ",n," values int the range",x(jray(1)),x(iray(1))
 t1=the_time()
 do j=1,10
 do i=1,n
 c1(i)=cceil(x(i))
 f1(i)=cfloor(x(i))
 enddo
 enddo
 t2=the_time()
 write(*,'(" c version dt= ",f8.3)')t2-t1
 t1=the_time()
 do j=1,10
 do i=1,n
 c2(i)=fceil(x(i))
 f2(i)=ffloor(x(i))
 enddo
 enddo
 t2=the_time()
 write(*,'("f90 version dt= ",f8.3)')t2-t1
 write(*,*)"checking for differences"
 diff=.false.
 do i=1,n
 if(c2(i).ne.c1(i))then
 diff=.true.
 write(*,*)" ceil ",c2(i),c1(i)
 endif
 if(f2(i).ne.f1(i))then
 diff=.true.
 write(*,*)"floor ",f2(i),f1(i)
 endif
 enddo
 if(.not.diff)write(*,*)"none found"
end program

Figure 4. Fortran versions of CCEIL and CFLOOR along with a test program that

calls both the C and Fortran versions.

22

sp129 % cat mycode.17485.out
 checking 1000000 values int the range -999999065883.457275

999999891966.581177
 c version dt= 6.577
f90 version dt= 4.525
 checking for differences
 none found
sp129 %

Figure 5. Output from the CCEIL and CFLOOR program showing that the Fortran

versions of the floor and ceiling routines are faster than the C subroutines.

5.3.3 Timing

There are functions in Fortran 90 that can be used to return wall clock time (DATE_AND_TIME

and SYSTEM_CLOCK) To see how DATE_AND_TIME can be used to create a 1 millisecond

resolution timer, see the routine THE_TIME in the previous section.

There are two uses of time in MACH: recording the wall clock time and reporting the cpu

usage time. The MPI routine MPI_Wtime can be used to obtain the wall clock time. MACH

uses a C routine based on the library function getrusage to ruturn cpu usage. The calling

procedure for getusage is highly machine-dependent. It does not even have the same arguments

on all machines. There is no Fortran 90 routine that returns cpu time.

There is a Fortran 95 routine CPU_TIME that does return cpu usage. It returns the user time

up to the point at which it is called in the program. CPU_TIME is called before and after the

section of interest to get the elapsed cpu usage for that section. The program below illustrates

the usage of CPU_TIME. This routine is available on most Fortran 90 compilers, includingthose

from IBM, Sun, Cray, SGI, and Compaq.

module numz
 integer, parameter:: b8 = selected_real_kind(14)
 real(b8),parameter:: pi=3.141592653589793238462643383_b8

23

end module

program test_time
 use numz
 real(b8)t1,t2,x
 x=0.0
 call cpu_time(t1)
 do i=1,1000000
 x=x+sin(cos(sin(pi*real(i,b8)/1000.0_b8)))
 enddo
 call cpu_time(t2)
 write(*,*)"cpu usage=",t2-t1
 write(*,*)x
end program

sp129 % timex a.out
 cpu usage= 2.66000000000000014
 683536.742344877683

real 9.38
user 2.46
sys 0.21

Figure 6. Example program showing how to use the Fortran 95 routine CPU_TIME

with output on SDSC SP that is loaded with other tasks. Note that the times

reported by the program and timex (user+sys times) are essentially the same.

5.2 Memory allocation

As discussed by Colella, Frese, and Peterkin in the presentation “MPI Portability Issues for a

Parallel 3d MDH Simulation Code,” portability can be enhanced by adherence to standards.

MACH uses a combination of programming languages, Fortran 77 with Cray extensions and

some C. A reduction in the use of extensions to languages and inter-language calls can increase

portability.

The main Fortran 77 extension used in MACH is the so-called Cray pointer for dynamic

memory referencing. The Cray pointer is also known as an integer pointer in some vendors

24

documentation.

A simple example will illustrate the use of the Cray pointer. Normally, when an array is

referenced in a Fortran program, the memory for that array is set aside when the program (or

subroutine) starts. For example, in the program below the memory for X and Y is allocated at

program start-up.

We also have the array xp that is also referenced in a pointer statement.

pointer(ip,xp)

In this statement ip is the pointer and xp is the pointee. When an array is also listed in a

pointer statement, memory is not allocated for it at program initialization. In order to use xp as

an array, we need to associate memory with it. This is done by assigning a memory location to

the pointer variable, ip in this case. When an assignment is made to ip, the starting memory

location for the array xp becomes the value assigned to ip. That is, if ip=1234, loc(xp(1))=1234,

where loc is a function that returns the memory location for a variable. If we tried to access the

array xp, the results would be unpredictable, because the array maps to an arbitrary memory

location. Next, we assign ip=loc(x(1)), and then the arrays xp and x map to the same memory

locations as shown by the print statements. Then we assign ip=loc(y(1)), so that xp and y map to

the same memory locations.

program test
 dimension x(10),y(10),z(50)
! arrays x and y each have space for 10 elements
! z has space for 50 elements
!
 dimension xp(10)
 pointer(ip,xp)
! ip is the pointer and xp is the pointee
! because xp is associated with the pointer ip
! at this point the array xp does not have memory associated to it
! if we tried to access the array xp the program would crash
!
! stuff some data into the arrays x, y and z
 do i=1,50
 z(i)=i

25

 enddo

 ip=1234
 write(*,"(2i10)")ip,loc(xp(1))
 ip=loc(x(1))
 write(*,"(2i10,5f8.1)")loc(x(1)),loc(xp(1)),(xp(i),i=1,5)
 ip=loc(y(1))
 write(*,"(2i10,5f8.1)")loc(y(1)),loc(xp(1)),(xp(i),i=1,5)
 do j=1,10
 k=(j-1)*5+1
 ip=loc(z(k))
 write(*,"(3i10,5f8.1)")k,loc(z(k)),loc(xp(1)),(xp(i),i=1,5)
 enddo
end program
Typical output from the program is
t90 % a.out
 1234 1234
 196479 196479 -1.0 -2.0 -3.0 -4.0 -5.0
 196489 196489 1.0 4.0 9.0 16.0 25.0
 1 196499 196499 1.0 2.0 3.0 4.0 5.0
 6 196504 196504 6.0 7.0 8.0 9.0 10.0
 11 196509 196509 11.0 12.0 13.0 14.0 15.0
 16 196514 196514 16.0 17.0 18.0 19.0 20.0
 21 196519 196519 21.0 22.0 23.0 24.0 25.0
 26 196524 196524 26.0 27.0 28.0 29.0 30.0
 31 196529 196529 31.0 32.0 33.0 34.0 35.0
 36 196534 196534 36.0 37.0 38.0 39.0 40.0
 41 196539 196539 41.0 42.0 43.0 44.0 45.0
 46 196544 196544 46.0 47.0 48.0 49.0 50.0
The numbers from 196479 to 196544 are memory locations that could change from one run

to the next.

Figure 7. Simple program illustrating the usage of Cray pointers.

The way pointers are used in MACH is akin to this example given above. There is a

collection of arrays for each block of the grid. These arrays are also pointees. At different times

in a run, the pointee variables are associated with different sections of memory. Before a

calculation is performed on a block, the pointers are updated so that the arrays map to the data

associated with the particular block.

For completeness, a version of the example is given below that uses standard Fortran 90

pointers. Notice that ip is not referenced and that the pointer assignments are done directly using

the => notation.

program test
 pointer :: xp(:)
 real,target :: x(10),y(10),z(50)
 do i=1,10

26

 x(i)=(-i)

 y(i)=i*i
 enddo
 do i=1,50
 z(i)=i
 enddo
! ip=1234
! write(*,"(2i10)")ip,loc(xp(1))
 xp=>x
 write(*,"(2i10,5f8.1)")loc(x(1)),loc(xp(1)),(xp(i),i=1,5)
 xp=>y
 write(*,"(2i10,5f8.1)")loc(y(1)),loc(xp(1)),(xp(i),i=1,5)
 do j=1,10
 k=(j-1)*5+1
 xp=>z(k:)
 write(*,"(3i10,5f8.1)")k,loc(z(k)),loc(xp(1)),(xp(i),i=

1,5)
 enddo
end program

Figure 8. Simple program showing the usage of Fortran 90 pointers.

Although many Fortran 77 vendors implement some type of pointer extension, they do not

all match the exact semantics of the Cray pointers. Thus, porting to new platforms using the Cray

pointers can be problematic.

This problem can be alleviated by replacing the Cray pointers with Fortran 90 pointers.

Most hardware vendors support Fortran 90, including Sun, DEC (Compact), SGI/Cray, and IBM.

On the Cray machines, Fortran 77 is no longer supported, and on the IBM, the Fortran 77

compiler is a subset of the Fortran 90 compiler.

Brian Smith of the University of New Mexico modified MACH to use Fortran 90 pointers.

Using the IBM compiler he discovered there was a substantial performance penalty transitioning

from Cray to Fortran 90 pointers. However, he was using an older version of the compiler,

version 5. IBM was aware of the potential for the problem and has taken steps to address this

issue. Version 7 of XLF is now in beta testing and will be released in early 2000.

Neither of the examples shown above uses dynamic memory allocation. The amount of

27

memory used by the program is constant from beginning to end. MACH uses dynamic memory

allocation. It now uses a C subroutine to perform it. The memory address returned by the C

routine is then pointed to, using the Cray style pointers.

The C routine that handles dynamic memory allocation can be replaced with a Fortran 90

routine. This can be done with or without converting the rest of MACH to use Fortran 90

pointers. A simple example of how this can be done is given below. The program calls a routine

FMALLOC that uses Fortran 90 semantics to allocate memory. The memory allocated by this

program is then referenced using a Cray style pointer.

module do_memory
 real,allocatable :: x(:)
 integer :: save_point
 contains
 function fmalloc(isize) result (point)
 integer :: point
 integer :: isize
 save
 allocate(x(isize/8))
 save_point=loc(x(1))
 point=save_point
 end function fmalloc
 function ffree(i) result (err_code)
 if(i .eq. save_point)then
 deallocate(x)
 err_code=0
 else
 err_code=-1
 endif
 end function ffree
end module
program test
 use do_memory
 pointer(ip,xp(1))
 ip2=fmalloc(40)
 ip=ip2
 do i=1,5
 xp(i)=i*i
 enddo
 write(*,"(2i10,5f8.1)")ip,loc(xp(1)),(xp(i),i=1,5)
 ierr=ffree(ip2)
 write(*,*)"ierr=",ierr
end program

28

Figure 9. Simple program combining the usage of Cray and Fortran 90 pointers.

Clearly, the memory allocation module shown above is not production-ready. It allows only

allocation/deallocation of a single block of memory. A production-ready version of the memory

allocation module was written that can be used to allocate and deallocate blocks of memory. The

module contains enhanced versions of the FMALLOC and FFREE routines given above. Given

a size in bytes, FMALLOC returns a Cray style pointer to a block of memory of that size.

FFREE frees the block of memory. Two additional routines are provided, FQUERY and FDUMP.

FQUERY has two integer output arguments. It returns the number of pointers allocated and the

total number of bytes allocated. FDUMP returns a list of memory address for all of the pointers

and the number of bytes associated with each pointer.

Fortran 90 does not normally track blocks of memory by address. The memory management

module uses a splay tree to keep track addresses of the blocks of memory allocated. This

information is used when the memory is released. Because the splay tree is a dynamic structure,

the number of blocks of memory allocated can be arbitrary.

The data structure associated with the splay tree is:

 type, public :: tree
 integer :: key
 integer :: item
 integer, pointer,dimension(:) :: the_data
 type (tree), pointer :: parent, left, right
 end type tree

29

Key is the address of the data to be used in association with the Cray style pointer. Item is

the number of bytes allocated at theparticular memory location. The array the_data provides the

storage space for the user data. Key point to the first ellemot of the_data. Parent, left, and right

are used to manage the tree.

The module uses the function loc to determine memory locations. For an MPI version of

this module, loc could be replaced with MPI_Address.

This module could be modified to return Fortran 90 pointers instead of Cray pointers. Thus

if the Cray pointers in MACH were replaced with Fortran 90 pointers the same memory managment

modul could be used. This would provide the advantage of being able to better track memory

usageusing FQUERY and FDUMP.

The original source for the splay tree algorithm in Pascal can be found in Moret and

Shapiro, 1991. The listing for the Fortran 90 module is given in the appendix along with a

example driver application. The main program first populates the splay tree with pointers to

arrays of data. Then the user is asked what to do next. A real or integer array can be allocated

and added to the structure. Arrays can be freed. Allocation information can be output using the

FQUERY function. Values can be put in the arrays and printed back out. Finally a “test” can be

run. The test automatically and repeatedly frees all arrays in the tree and then adds arrays to the

tree. The user is asked how many times this is to be done, how many arrays to add to the tree,

and the size of those arrays. This function can be used to test for memory leaks.

5.3 Numerical precision

The default real data type on the Cray T90 and Cray T3e is an 8-byte real, giving 15 digits

of precision. On the IBM SP, we have as the default 4-byte reals with 6 digits of precision.

30

Since we do not want to specify double precision variables on the T90, we specify our reals as

real*8. There are some portability problems with this declaration. Real*8 is not supported as

part of the Fortran 90 standard.

Also, if we specify a real constant such as

x=1.23456789

some compilers, including the IBM xlf compiler, will truncate this to a 4-byte real before doing

the assignment, and some compilers will pass a 4-byte real if the constant is used in a subroutine

call. If we specify

x=1.23456789d0

we get a 16 byte real on some machines.

A portable method for specifying precision is to use the Fortran 90 kind facility to define our

real type within a module as shown below. This program will produce the output

 pi has 15 digits precision 3.14159265358979312

with the value being accurate to at least 14 digits, independent of platform.

module numz
integer, parameter:: b8 = selected_real_kind(14)
end module
program mach
use numz
real(b8) pi
pi=3.141592653589793239_b8
write(*,*)"pi has ",precision(pi)," digits precision ",pi
end program

Figure 10. Program illustrating the usage of selected_real_kind to obtain portable

numerical precision.

The line

31

integer, parameter:: b8 = selected_real_kind(14)

defines a constant such that if we declare a variable of type

real(b8)

the variable will have a minimum of 14 digits of precision. The extension _b8 is used to assign

the precision for constants.

6 Lessons learned

This section contains some insights gained from the study of MACH. These insights are

both about MACH and PET efforts in general.

6.1 About MACH

There is not a single time-dominant routine in MACH, but there are several routines that use

significant amounts of time. HYDITBLK.F is the most predominant, using about 20%, depending

on input. Restructuring the subroutine to remove redundant calculations and selectively using a

higher-level optimization on this routine reduced the run time about 8%. Removing redundant

operation from other routines did not reduce the run time.

Adding OpenMP directives to MACH did not significantly reduce the program run time.

This is due to the high overhead associated with invoking OpenMP threads. MACH is essentially

an object-oriented program with operations occurring on blocks of data. It may be beneficial to

restructure MACH so that a collection of OpenMP threads works on a collection of blocks of

data. This might be especially beneficial on hybrid machines where there are M share memory

processors per node and each node communicates using MPI.

MACH performs a large amount of communications relative to computations. In a 714

second 188 cycle run on 60 processors, there were 78,882 calls to MPI_Wait on each processor,

with 194 seconds spent in the MPI_Wait subroutine. Attempts to reduce the time spent in

32

MPI_WAIT by using persistent communications were not successful. It may be beneficial to

perform an analysis of the physics of the simulation to determine if some of the messages could

be combined.

MACH uses a combination of Fortran with the Cray pointer extension and C. Having a

combination of C and Fortran reduces portability and increases maintenance efforts. Most, if not

all, of the C routines could be removed from MACH. Example Fortran routines are provided

that have the same functionality as the C routines.

6.2 About the process

Although some progress was made on MACH, the effort took a long time. It is beneficial to

look at ways the PET process could be improved and where there were problems in the MACH

effort. Two things that could be different to help speed the progress are, there needs to be better

coordination between the SDSC and project researchers and better tools are needed.

The effort on MACH appeared to get off to a good start. The code was provided to SDSC

quickly after the first visit to AFRL. Example data sets were provided with the distribution.

Some days later, an additional set of inputs was provided to SDSC. These various data sets were

used in the profiling runs. When SDSC reported the profiling results to AFRL, the relevance

was questioned, because the inputs did nor represent the way the program was normally used.

Unfortunately, this was not known at SDSC. When the new version of MACH was released,

additional relevant inputs were provided. They did not work correctly with the version of the

program that was given to SDSC. It took several iterations to get data sets working with the

latest version of the program. The new version of the program was sent to SDSC in February

33

and the first runs with it and working data sets did not occur until late March. Clearly, better

communication of information would be beneficial.

The most important tools missing from SDSC are profiling tools. The hardware performance

monitor that was used for this effort was a hack of third-party code. Although it appeared to

provide useful information, it was difficult to use and required modifications to the program.

The IBM provided tool Xprofilier does not provide the level of detail necessary. VT is the tool

for profiling MPI provided by IBM. It also does not provide sufficient level of detail. Clearly,

there is much to be gained in further study, evaluation, and development of profiling tools.

34

Appendix 1. New version of HYDITBLK
 subroutine hyditblk(dtb,errmax)

c-----adjust magnetic field, pressure, and density

cdir$ nolist
 include 'common.h'
 include 'bccommon.h'
 include 'inputcom.h'
 include 'pointer.h'
 include 'strncom.h'
 include 'parallel.h'
cdir$ list
 real*8 tims1,tims2,tims3,tims4
 real*8 tims5,tims6,tims7,tims8,tims9
 dimension s(mxij),sbx(mxij),sby(mxij),sbz(mxij),
 1 cxx(mxij),cxr(mxij),crr(mxij),cry(mxij),
 1 cxy(mxij),cyy(mxij),czz(mxij),
 2 a11(mxij),a12(mxij),a13(mxij),a14(mxij),
 3 a21(mxij),a22(mxij),a23(mxij),a24(mxij),
 4 a31(mxij),a32(mxij),a33(mxij),a34(mxij),
 5 a41(mxij),a42(mxij),a43(mxij),a44(mxij),
 6 b22(mxij),b23(mxij),b24(mxij),
 7 b32(mxij),b33(mxij),b34(mxij),
 8 b42(mxij),b43(mxij),b44(mxij),
 9 c33(mxij),c34(mxij),c43(mxij),c44(mxij),
 a dro(mxij),dbx(mxij),dby(mxij),dbz(mxij),
 b divbx(mxij),divby(mxij),divbz(mxij)

 dimension uxp(mxij),uxbx(mxij),uxby(mxij),uxbz(mxij),
 1 uyp(mxij),uybx(mxij),uyby(mxij),uybz(mxij),
 2 urp(mxij),urbx(mxij),urby(mxij),urbz(mxij),
 3 vxp(mxij),vxbx(mxij),vxby(mxij),vxbz(mxij),
 4 vyp(mxij),vybx(mxij),vyby(mxij),vybz(mxij),
 5 wxp(mxij),wxbx(mxij),wxby(mxij),wxbz(mxij),
 6 wrp(mxij),wrbx(mxij),wrby(mxij),wrbz(mxij),
 7 wyp(mxij),wybx(mxij),wyby(mxij),wybz(mxij),
 8 uzp(mxij),uzbx(mxij),uzby(mxij),uzbz(mxij),
 9 vzp(mxij),vzbx(mxij),vzby(mxij),vzbz(mxij),
 a wzp(mxij),wzbx(mxij),wzby(mxij),wzbz(mxij)

 call rs2hpm_appl_strt()
 omt = one - theb
 rdtb = one / dtb
 dtbom0 = dtb / m0
 dalph2 = 0.5d0 * dalpha**2

c.....3d loop
 do 1000 k=1,kcells

 ka1 = 1 + mod(k , kcells)

 do 1000 j=1,jcels

c-------compute the rate of strain tensor

 call strain(ul3d,vl3d,wl3d,j,cyl,dalpha,k)

c-------compute velocity times the divergence of B at cell centers

C do 100 i=1,icels
C
C divbx(i) = 0.5d0 * (
C 1 dvb3d(i+1,j,k)*ul3d(i+1,j,k)*cvol1(i,j)
C 1 +dvb3d(i+1,j+1,k)*ul3d(i+1,j+1,k)*cvol2(i,j)

35

C 1 +dvb3d(i,j+1,k)*ul3d(i,j+1,k)*cvol3(i,j)

C 1 +dvb3d(i,j,k)*ul3d(i,j,k)*cvol4(i,j)
C 1 + dvb3d(i+1,j,ka1)*ul3d(i+1,j,ka1)*cvol1(i,j)
C 2 +dvb3d(i+1,j+1,ka1)*ul3d(i+1,j+1,ka1)*cvol2(i,j)
C 3 +dvb3d(i,j+1,ka1)*ul3d(i,j+1,ka1)*cvol3(i,j)
C 4 +dvb3d(i,j,ka1)*ul3d(i,j,ka1)*cvol4(i,j)
C 5)*rvol(i,j)
C
C divby(i) = 0.5d0 * (
C 1 dvb3d(i+1,j,k)*vl3d(i+1,j,k)*cvol1(i,j)
C 1 +dvb3d(i+1,j+1,k)*vl3d(i+1,j+1,k)*cvol2(i,j)
C 1 +dvb3d(i,j+1,k)*vl3d(i,j+1,k)*cvol3(i,j)
C 1 +dvb3d(i,j,k)*vl3d(i,j,k)*cvol4(i,j)
C 1 + dvb3d(i+1,j,ka1)*vl3d(i+1,j,ka1)*cvol1(i,j)
C 2 +dvb3d(i+1,j+1,ka1)*vl3d(i+1,j+1,ka1)*cvol2(i,j)
C 3 +dvb3d(i,j+1,ka1)*vl3d(i,j+1,ka1)*cvol3(i,j)
C 4 +dvb3d(i,j,ka1)*vl3d(i,j,ka1)*cvol4(i,j)
C 5)*rvol(i,j)
C
C divbz(i) = 0.5d0 * (
C 1 dvb3d(i+1,j,k)*wl3d(i+1,j,k)*cvol1(i,j)
C 1 +dvb3d(i+1,j+1,k)*wl3d(i+1,j+1,k)*cvol2(i,j)
C 1 +dvb3d(i,j+1,k)*wl3d(i,j+1,k)*cvol3(i,j)
C 1 +dvb3d(i,j,k)*wl3d(i,j,k)*cvol4(i,j)
C 1 + dvb3d(i+1,j,ka1)*wl3d(i+1,j,ka1)*cvol1(i,j)
C 2 +dvb3d(i+1,j+1,ka1)*wl3d(i+1,j+1,ka1)*cvol2(i,j)
C 3 +dvb3d(i,j+1,ka1)*wl3d(i,j+1,ka1)*cvol3(i,j)
C 4 +dvb3d(i,j,ka1)*wl3d(i,j,ka1)*cvol4(i,j)
C 5)*rvol(i,j)
C
C 100 continue
 do 100 i=1,icels
 tims1=dvb3d(i+1,j,k)*cvol1(i,j)
 tims2=dvb3d(i+1,j+1,k)*cvol2(i,j)
 tims3=dvb3d(i,j+1,k)*cvol3(i,j)
 tims4=dvb3d(i,j,k)*cvol4(i,j)
 tims5=dvb3d(i+1,j,ka1)*cvol1(i,j)
 tims6=dvb3d(i+1,j+1,ka1)*cvol2(i,j)
 tims7=dvb3d(i,j+1,ka1)*cvol3(i,j)
 tims8=dvb3d(i,j,ka1)*cvol4(i,j)
 tims9=0.5d0*rvol(i,j)
c23456
 divbx(i) = tims9 * (tims1*ul3d(i+1,j,k)
 1 + tims2*ul3d(i+1,j+1,k)
 2 + tims3*ul3d(i,j+1,k)
 3 + tims4*ul3d(i,j,k)
 4 + tims5*ul3d(i+1,j,ka1)
 5 + tims6*ul3d(i+1,j+1,ka1)
 6 + tims7*ul3d(i,j+1,ka1)
 7 + tims8*ul3d(i,j,ka1))
 divbx(i) = tims9 * (tims1*vl3d(i+1,j,k)
 1 + tims2*vl3d(i+1,j+1,k)
 2 + tims3*vl3d(i,j+1,k)
 3 + tims4*vl3d(i,j,k)
 4 + tims5*vl3d(i+1,j,ka1)
 5 + tims6*vl3d(i+1,j+1,ka1)
 6 + tims7*vl3d(i,j+1,ka1)
 7 + tims8*vl3d(i,j,ka1))
 divbx(i) = tims9 * (tims1*wl3d(i+1,j,k)
 1 + tims2*wl3d(i+1,j+1,k)
 2 + tims3*wl3d(i,j+1,k)
 3 + tims4*wl3d(i,j,k)
 4 + tims5*wl3d(i+1,j,ka1)
 5 + tims6*wl3d(i+1,j+1,ka1)
 6 + tims7*wl3d(i,j+1,ka1)
 7 + tims8*wl3d(i,j,ka1))
 100 continue

c-------compute the residual error

36

 do 200 i=1,icels

c---------az = 0 if the density is less than rofhyd; 1 otherwise
 az = 0.5 * (one + sign(one , (ro3d(i,j,k)
 % -rofhyd(material(i,j,k)))))

 s(i)=az*(rol3d(i,j,k)*(one+s00(i)*dt)
 % - ro3d(i,j,k)*(one+omt*s00(i)*dt))

 sbx(i)=az*(bxl3d(i,j,k)*(one+s00(i)*dt)-bxn3d(i,j,k)*
 % (one+omt*s00(i)*dt)
 % -(bxl3d(i,j,k)*s11(i)+byl3d(i,j,k)*s12(i)
 % -bzl3d(i,j,k)*s30(i) +divbx(i))*dtb)
 1 - az*(bzl3d(i,j,k)*s13(i)*dtb)

 sby(i)=az*(byl3d(i,j,k)*(one+s00(i)*dt)-byn3d(i,j,k)*
 % (one+omt*s00(i)*dt)
 % -(bxl3d(i,j,k)*s21(i)+byl3d(i,j,k)*s22(i)
 % +divby(i))*dtb)
 1 - az*(bzl3d(i,j,k)*s23(i)*dtb)

 sbz(i)=az*(bzl3d(i,j,k)*(one+s00(i)*dt)-bzn3d(i,j,k)*
 % (one+omt*s00(i)*dt)
 % -(bxl3d(i,j,k)*s31(i)+byl3d(i,j,k)*s32(i)
 % +bzl3d(i,j,k)*s10(i) +divbz(i))*dtb)
 1 - az*(bzl3d(i,j,k)*s33(i)*dtb)

c---------compute square of relative error

 roerr3d(i,j,k) = (s(i)/ro3d(i,j,k))**2
 berr3d(i,j,k) = (sbx(i)**2+sby(i)**2+sbz(i)**2) /
 % (bxn3d(i,j,k)**2+byn3d(i,j,k)**2
 % +bzn3d(i,j,k)**2+eps)

 200 continue

c-------collect intermediate variables

 do 300 i=1,icels

 cxx(i)=(cx1(i,j)*cx1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))
 1 +cx2(i,j)*cx2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +cx3(i,j)*cx3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +cx4(i,j)*cx4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)*0.5d0

 cxr(i)=(cx1(i,j)*crr1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))
 1 +cx2(i,j)*crr2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +cx3(i,j)*crr3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +cx4(i,j)*crr4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)*dalpha*0.5d0

 crr(i)=(crr1(i,j)*crr1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))
 1 +crr2(i,j)*crr2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +crr3(i,j)*crr3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +crr4(i,j)*crr4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)*dalph2

 czz(i)=(cz1(i,j)*cz1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))
 1 +cz2(i,j)*cz2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +cz3(i,j)*cz3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +cz4(i,j)*cz4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)

 cry(i)=(crr1(i,j)*cy1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))
 1 +crr2(i,j)*cy2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +crr3(i,j)*cy3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +crr4(i,j)*cy4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)*dalpha*0.5d0

37

 cxy(i)=(cx1(i,j)*cy1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))

 1 +cx2(i,j)*cy2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +cx3(i,j)*cy3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +cx4(i,j)*cy4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)*0.5d0

 cyy(i)=(cy1(i,j)*cy1(i,j)*(rm3d(i+1,j ,k)+rm3d(i+1,j ,ka1))
 1 +cy2(i,j)*cy2(i,j)*(rm3d(i+1,j+1,k)+rm3d(i+1,j+1,ka1))
 2 +cy3(i,j)*cy3(i,j)*(rm3d(i ,j+1,k)+rm3d(i ,j+1,ka1))
 3 +cy4(i,j)*cy4(i,j)*(rm3d(i ,j ,k)+rm3d(i ,j ,ka1))
 4)*rvol(i,j)*0.5d0

 300 continue

c-------variations of rate of strain wrt rho and B

 do 400 i=1,icels

 uxp(i) = (cxx(i)+cxr(i)) * dtb
 uxbx(i) = (bxl3d(i,j,k)*(cxr(i)-cxx(i))
 % - byl3d(i,j,k)*cxy(i)) * dtbom0
 uxby(i) = (byl3d(i,j,k)*(cxx(i)+cxr(i))
 % - bxl3d(i,j,k)*cxy(i)) * dtbom0
 uxbz(i) = (bzl3d(i,j,k)*(cxx(i)-cxr(i))) * dtbom0

 uyp(i) = (cry(i)+cxy(i)) * dtb
 uybx(i) = (bxl3d(i,j,k)*(cry(i)-cxy(i))
 % -byl3d(i,j,k)*cyy(i)) * dtbom0
 uyby(i) = (byl3d(i,j,k)*(cxy(i)+cry(i))
 % -bxl3d(i,j,k)*cyy(i)) * dtbom0
 uybz(i) = (bzl3d(i,j,k)*(cxy(i)-cry(i))) * dtbom0

 urp(i) = (crr(i)+cxr(i)) * dtb
 urbx(i) = (bxl3d(i,j,k)*(crr(i)-cxr(i))
 % - byl3d(i,j,k)*cry(i)) * dtbom0
 urby(i) = (byl3d(i,j,k)*(cxr(i)+crr(i))
 % - bxl3d(i,j,k)*cry(i)) * dtbom0
 urbz(i) = bzl3d(i,j,k)*(cxr(i)-crr(i)) * dtbom0

 vxp(i) = cxy(i) * dtb
 vxbx(i) = (bxl3d(i,j,k)*cxy(i)
 % - byl3d(i,j,k)*cxx(i)) * dtbom0
 vxby(i) = (-byl3d(i,j,k)*cxy(i)
 % - bxl3d(i,j,k)*cxx(i)) * dtbom0
 vxbz(i) = bzl3d(i,j,k)*cxy(i) * dtbom0

 vyp(i) = cyy(i) * dtb
 vybx(i) = (bxl3d(i,j,k)*cyy(i)
 % - byl3d(i,j,k)*cxy(i)) * dtbom0
 vyby(i) = (-byl3d(i,j,k)*cyy(i)
 % - bxl3d(i,j,k)*cxy(i)) * dtbom0
 vybz(i) = bzl3d(i,j,k)*cyy(i) * dtbom0

 wxp(i) = 0.0d0
 wxbx(i) = bzl3d(i,j,k)*(cxr(i)-cxx(i)) * dtbom0
 wxby(i) = -bzl3d(i,j,k)*cxy(i) * dtbom0
 wxbz(i) = (bxl3d(i,j,k)*(cxr(i)-cxx(i))
 % - byl3d(i,j,k)*cxy(i)) * dtbom0

 wyp(i) = 0.0d0
 wybx(i) = bzl3d(i,j,k)*(cry(i)-cxy(i)) * dtbom0
 wyby(i) = -bzl3d(i,j,k)*cyy(i) * dtbom0
 wybz(i) = (bxl3d(i,j,k)*(cry(i)-cxy(i))
 % -byl3d(i,j,k)*cyy(i)) * dtbom0

 wrp(i) = 0.0d0
 wrbx(i) = bzl3d(i,j,k)*(crr(i)-cxr(i)) * dtbom0
 wrby(i) = -bzl3d(i,j,k)*cry(i) * dtbom0
 wrbz(i) = (bxl3d(i,j,k)*(crr(i)-cxr(i))
 % - byl3d(i,j,k)*cry(i)) * dtbom0

38

 uzp(i) = 0.0d0
 uzbx(i) = -bzl3d(i,j,k)*czz(i) * dtbom0
 uzby(i) = 0.0d0
 uzbz(i) = -bxl3d(i,j,k)*czz(i) * dtbom0

 vzp(i) = 0.0d0
 vzbx(i) = 0.0d0
 vzby(i) = -bzl3d(i,j,k)*czz(i) * dtbom0
 vzbz(i) = -byl3d(i,j,k)*czz(i) * dtbom0

 wzp(i) = czz(i) * dtb
 wzbx(i) = bxl3d(i,j,k)*czz(i) * dtbom0
 wzby(i) = byl3d(i,j,k)*czz(i) * dtbom0
 wzbz(i) = -bzl3d(i,j,k)*czz(i) * dtbom0

 400 continue

c-------sensitivity matrix (variations of the residuals wrt rho and B)
c------- divided by dtb

 do 500 i=1,icels

 a11(i) = rdtb + s00(i)
 % + csq3d(i,j,k)*rol3d(i,j,k)
 % *(uxp(i)+urp(i)+vyp(i)+wzp(i))
 a12(i) = rol3d(i,j,k)*(uxbx(i)+urbx(i)+vybx(i)+wzbx(i))
 a13(i) = rol3d(i,j,k)*(uxby(i)+urby(i)+vyby(i)+wzby(i))
 a14(i) = rol3d(i,j,k)*(uxbz(i)+urbz(i)+vybz(i)+wzbz(i))

 a21(i) = csq3d(i,j,k) *
 % (bxl3d(i,j,k)*(urp(i)+vyp(i)+wzp(i))-byl3d(i,j,k)
 % *uyp(i)
 % +bzl3d(i,j,k)*(wrp(i)-uzp(i)))
 a22(i) = rdtb + (s00(i)-s11(i))
 % + (bxl3d(i,j,k)*(urbx(i)+vybx(i)+wzbx(i))
 % -byl3d(i,j,k)*uybx(i)
 % +bzl3d(i,j,k)*(wrbx(i)-uzbx(i)))
c.....stopped here
 a23(i) = -s12(i)
 % + (bxl3d(i,j,k)*(urby(i)+vyby(i))
 % -byl3d(i,j,k)*uyby(i)+bzl3d(i,j,k)*wrby(i))
 % + (bxl3d(i,j,k)*wzby(i) - bzl3d(i,j,k)*uzby(i))
 a24(i) = s30(i)
 % + (bxl3d(i,j,k)*(urbz(i)+vybz(i))
 % -byl3d(i,j,k)*uybz(i)+bzl3d(i,j,k)*wrbz(i))
 % - s13(i) +
 % (bxl3d(i,j,k)*wzbz(i) - bzl3d(i,j,k)*uzbz(i))

 a31(i) = csq3d(i,j,k) *
 % (byl3d(i,j,k)*(uxp(i)+urp(i))-bxl3d(i,j,k)*vxp(i))
 % + csq3d(i,j,k) *
 % (byl3d(i,j,k)*wzp(i) - bzl3d(i,j,k)*vzp(i))
 a32(i) = -s21(i)
 % + (byl3d(i,j,k)*(uxbx(i)+urbx(i))
 % -bxl3d(i,j,k)*vxbx(i))
 % + (byl3d(i,j,k)*wzbx(i) - bzl3d(i,j,k)*vzbx(i))
 a33(i) = rdtb + (s00(i)-s22(i))
 % + (byl3d(i,j,k)*(uxby(i)+urby(i))
 % -bxl3d(i,j,k)*vxby(i))
 % + (byl3d(i,j,k)*wzby(i) - bzl3d(i,j,k)*vzby(i))
 a34(i) = (byl3d(i,j,k)*(uxbz(i)+urbz(i))
 % -bxl3d(i,j,k)*vxbz(i))
 % - s23(i) +
 % (byl3d(i,j,k)*wzbz(i) - bzl3d(i,j,k)*vzbz(i))

 a41(i) = csq3d(i,j,k) *
 % (bzl3d(i,j,k)*(uxp(i)+vyp(i))-bxl3d(i,j,k)*wxp(i)

39

 % -byl3d(i,j,k)*wyp(i))

 a42(i) = -s31(i)
 % + (bzl3d(i,j,k)*(uxbx(i)+vybx(i))
 % -bxl3d(i,j,k)*wxbx(i)-byl3d(i,j,k)*wybx(i))
 a43(i) = -s32(i)
 % + (bzl3d(i,j,k)*(uxby(i)+vyby(i))
 % -bxl3d(i,j,k)*wxby(i)-byl3d(i,j,k)*wyby(i))
 a44(i) = rdtb + (s00(i)-s10(i))
 % + (bzl3d(i,j,k)*(uxbz(i)+vybz(i))
 % -bxl3d(i,j,k)*wxbz(i)-byl3d(i,j,k)*wybz(i))
 % - s33(i)

 500 continue

c-------corrections to the iteration variables (rho and B)

 do 600 i = 1,icels

c---------the inverse of A via Gaussian elimination

 ws = a21(i) / a11(i)
 b22(i) = a22(i) - ws*a12(i)
 b23(i) = a23(i) - ws*a13(i)
 b24(i) = a24(i) - ws*a14(i)
 r2 = sbx(i) - ws*s(i)

 ws = a31(i) / a11(i)
 b32(i) = a32(i) - ws*a12(i)
 b33(i) = a33(i) - ws*a13(i)
 b34(i) = a34(i) - ws*a14(i)
 r3 = sby(i) - ws*s(i)

 ws = a41(i) / a11(i)
 b42(i) = a42(i) - ws*a12(i)
 b43(i) = a43(i) - ws*a13(i)
 b44(i) = a44(i) - ws*a14(i)
 r4= sbz(i) - ws*s(i)

 ws = b32(i) / b22(i)
 c33(i) = b33(i) - ws*b23(i)
 c34(i) = b34(i) - ws*b24(i)
 s3 = r3 - ws*r2

 ws = b42(i) / b22(i)
 c43(i) = b43(i) - ws*b23(i)
 c44(i) = b44(i) - ws*b24(i)
 s4 = r4 - ws*r2

c---------corrections

 dbztmp = -omegah * (s4*c33(i)-c43(i)*s3) /
 % (c44(i)*c33(i)-c43(i)*c34(i))
 dbytmp = -omegah * (c34(i)*dbztmp+s3) /
 % c33(i)
 dbxtmp = -omegah * (b23(i)*dbytmp+b24(i)*dbztmp+r2) /
 % b22(i)
 drotmp = -omegah *
 % (a12(i)*dbxtmp+a13(i)*dbytmp+a14(i)*dbztmp+s(i)) /
 % a11(i)

c---------replace dtb that was divided out of the sensitivity matrix
 dbz(i) = dbztmp * rdtb
 dby(i) = dbytmp * rdtb
 dbx(i) = dbxtmp * rdtb
 dro(i) = drotmp * rdtb

c---------increments

 bzl3d(i,j,k) = bzl3d(i,j,k) + dbz(i)
 byl3d(i,j,k) = byl3d(i,j,k) + dby(i)

40

 bxl3d(i,j,k) = bxl3d(i,j,k) + dbx(i)

 rol3d(i,j,k) = rol3d(i,j,k) + dro(i)
 pion3d(i,j,k)= pion3d(i,j,k) * (one + (dro(i)*csq3d(i,j,k))/
 % (p3d(i,j,k)+tiny))
 p3d(i,j,k) = p3d(i,j,k) + dro(i) * csq3d(i,j,k)

 600 continue

 1000 continue

c-----find the cell with the largest relative error

 erro = 0.
 errb = 0.
 do 2200, k=1,kcells
 do 2200 j=1,jcels
 do 2200 i=1,icels
 if(roerr3d(i,j,k) .gt. erro) then
 erro = roerr3d(i,j,k)
 idtro = i
 jdtro = j
 kdtro = k
 endif

 if (berr3d(i,j,k) .gt. errb) then
 errb = berr3d(i,j,k)
 idtrb = i
 jdtrb = j
 kdtrb = k
 endif
 2200 continue

 kz = int(0.5d0*(one + sign(one,(erro-errb))))
 idtit = (1-kz)*idtrb + kz*idtro
 jdtit = (1-kz)*jdtrb + kz*jdtro
 kdtit = (1-kz)*kdtrb + kz*kdtro
 errit = max(erro,errb)
 if(errit.gt.errm(lblk)) then
 errm(lblk) = errit
 idtia(lblk) = idtit
 jdtia(lblk) = jdtit
 kdtia(lblk) = kdtit
 ldtia(lblk) = lblk
 endif
 call rs2hpm_appl_stop()

 return
 end

41

Appendix 2. New versions of HYDBCS.F and BFLDBCS.F

c subroutine bfldbcs(bx,by,bz)
c subroutine rep_1(bx,by)
c subroutine rep_2(xt,yt,ibdry,i,bdytype)
c subroutine rep_3(xf,yf,ibdry,i,bdytype)
c subroutine rep_4(bz)
c subroutine rep_5(xt,ibdry,i,bdytype)
c subroutine rep_6(xf,ibdry,i,bdytype)
cbfldbcs
c rep_1
c rep_2
c MPI_IRecv
c MPI_IRecv
c
c rep_3
c MPI_ISend
c MPI_ISend
c rep_4
c rep_5
c MPI_IRecv
c
c rep_6
c MPI_ISend

 module my_loc
 include "mpif.h"
 end module
 module the_type
 type myreq
 integer address,dtype,proc,tag,com,ext
 end type
 end module
 module op_mod
 interface operator (.ne.)
 module procedure the_ne
 end interface
 contains
 function the_ne(a,b)
 use the_type
 logical the_ne
 type(myreq), intent(in) :: a,b
 the_ne=.false.
 if(a%address .ne. b%address)then
c write(*,'("address ",2i11)',advance="no")a%address , b%address
 the_ne=.true.
 return
 else
 return
 endif
 if(a%dtype .ne. b%dtype)then
 write(*,'("dtype ",2i11)',advance="no")a%dtype , b%dtype
 the_ne=.true.
 endif
 if(a%proc .ne. b%proc)then
 write(*,'("proc ",2i11)',advance="no")a%proc , b%proc
 the_ne=.true.
 endif
 if(a%tag .ne. b%tag)then
 write(*,'("tag ",2i11)',advance="no")a%tag , b%tag
 the_ne=.true.
 endif

42

 if(a%com .ne. b%com)then

 write(*,'("com ",2i11)',advance="no")a%com , b%com
 the_ne=.true.
 endif
 if(a%ext .ne. b%ext)then
 write(*,'("ext ",2i11)',advance="no")a%ext , b%ext
 the_ne=.true.
 endif
 end function
 end module

 module bonk3
 use the_type
 use op_mod
 use my_loc,only:MPI_STATUS_SIZE
 private :: MPI_STATUS_SIZE
 integer icom,jcom
 integer last_quest
 logical do_it,bonk,switch
 logical,pointer:: get_it(:),send_it(:)
 integer,pointer:: as_qst(:),ar_qst(:)
 logical, target:: get_it1(200),send_it1(200)
 logical, target:: get_it2(200),send_it2(200)
 integer, target:: as_qst1(200),ar_qst1(200)
 integer, target:: as_qst2(200),ar_qst2(200)
 integer myreqst(200)
 type (myreq)::mtest ,mqr(200),mqs(200)
 integer mystatus(MPI_STATUS_SIZE,200)
 integer do_now,called
 data icom /0/
 data jcom /0/
 data called /0/
 data do_it /.true./
 data switch /.true./
 save
 end module bonk3

 subroutine bfldbcs(bx,by,bz)

c-----set ghost cell data for magnetic induction
 use time_ray
 use the_type
 use op_mod
 use bonk3

cdir$ nolist
 include 'common.h'
 include 'inputcom.h'
 include 'pointer.h'
 include 'parallel.h'
cdir$ list

 dimension bxt(0:ip2,0:jp2,kcells),byt(0:ip2,0:jp2,kcells)
 dimension bzt(0:ip2,0:jp2,kcells)

 pointer (kpbxt , bxt)
 pointer (kpbyt , byt)
 pointer (kpbzt , bzt)

 pointer (kpbxnbr , bxnbr)
 pointer (kpbynbr , bynbr)
 pointer (kpbznbr , bznbr)

 lbx = lindex(bx)
 lby = lindex(by)
 lbz = lindex(bz)

c-----loop over the blocks once for the boundary exchange

43

 irrqst = 0
 isrqst = 0
 icom = 0
 last_quest=1
 bonk=.false.
 called=called+1
c write(*,*)"called=",called
 if(do_it)then
 do_it=.false.
 myreqst=0
 get_it1=.true.
 send_it1=.true.
 get_it2=.true.
 send_it2=.true.
c get_it=.true.
c send_it=.true.
 endif
 if(switch)then
 switch=.false.
 get_it=> get_it1
 send_it=> send_it1
 ar_qst=> ar_qst1
 as_qst=> as_qst1
 else
 switch=.true.
 get_it=> get_it2
 send_it=> send_it2
 ar_qst=> ar_qst2
 as_qst=> as_qst2
 endif
c write(*,*)"icom=",icom
 call start_timer(7)
 call start_timer(8)
 jcom=0
 do 10 lblk = 1, nblk
 if(procblk(lblk).eq.myrank) then
 call setblk
 kpbxt = lpoint(lbx,lblk)
 kpbyt = lpoint(lby,lblk)
 kpbzt = lpoint(lbz,lblk)
 call rep_1(bxt,byt)
 call rep_4(bzt)
 endif
10 continue
c if(icom .gt. 0)call MPI_Waitall(icom,myreqst,mystatus,ierror)
c call end routine
c-----wait on the receives and sends from the communication
c-----in rep_5/vf
 if(icom .ne. 2*irrqst)write(*,*)"icom .NE. irrqst",icom , irrqst
 if(icom .ne. 2*isrqst)write(*,*)"icom .NE. isrqst",icom , isrqst
 if(irrqst.gt.0) call MPI_Waitall(irrqst,ar_qst,status,ierror)
 if(isrqst.gt.0) call MPI_Waitall(isrqst,as_qst,status,ierror)
 if(bonk) then
 do timsreq=1,irrqst
 call mpi_request_free(ar_qst(timsreq),ierror)
 call mpi_request_free(as_qst(timsreq),ierror)
 enddo
 endif
 call end_timer(7)
 call end_timer(8)

c-----finally, treat corners specially
c-----loop over the blocks again for the corners exchange

 irrqst = 0
 isrqst = 0
 do 25 lblk = 1, nblk
 if(procblk(lblk).eq.myrank) then
 call setblk

44

 kpbxt = lpoint(lbx,lblk)

 kpbyt = lpoint(lby,lblk)
 kpbzt = lpoint(lbz,lblk)

 call bfldcc(bxt,byt,bzt)

 endif
25 continue

c-----wait for the receives and sends in the corner communication
 call start_timer(9)
 if(irrqst.gt.0) call MPI_Waitall(irrqst,arreqst,status,ierror)
 call end_timer(9)
 call start_timer(10)
 if(isrqst.gt.0) call MPI_Waitall(isrqst,asreqst,status,ierror)
 call end_timer(10)

 return
 end

 subroutine rep_1(bx,by)
 use the_type
 use op_mod
 use bonk3

c-----fill non-neighbor boundary ghost cells with bx,by values

cdir$ nolist
 include 'common.h'
 include 'bccommon.h'
 include 'inputcom.h'
 include 'pointer.h'
 include 'celcptrs.h'
 include 'parallel.h'
cdir$ list
 dimension bx(0:ip2,0:jp2,kcells),by(0:ip2,0:jp2,kcells)

 pointer (kpbxnbr , bxnbr)
 pointer (kpbynbr , bynbr)

 lbx = lindex(bx)
 lby = lindex(by)

c-----ghost cell data creation

 do 100 i=1,4
 ibdry = ibxyseq(i,lblk)
 lnbr = knbr(ibdry,lblk)

 if (magxybc(ibdry,lblk) .eq. 'conductr') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bctrfl(ibdry,bx,by,bx,by)
 call bcxtcsc2(rc,bx,rc,1)
 elseif (magxybc(ibdry,lblk) .eq. 'insulatr') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bctrfl(ibdry,bx,by,bx,by)
 call bcxtcsc2(rc,bx,rc,1)
 elseif (magxybc(ibdry,lblk) .eq. 'axis') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcmltsc(bx,bx,-1.d0)
 call bccpysc(by,by)
 elseif (magxybc(ibdry,lblk) .eq. 'symmetry') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcnrfl(ibdry,bx,by,bx,by)
 elseif (magxybc(ibdry,lblk) .eq. 'contnutv') then

45

c from to range

 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bccpyvf(bx,by,bx,by)
 call bcxtcsc2(rc,bx,rc,1)
 elseif (magxybc(ibdry,lblk) .eq. 'specfied') then
c from to range
 call bcpntrs(ibdry,this,ghst,this,ghst,all,cell)
 call bcrcpsc(rc,bx,bxbdy(ibdry,lblk))
 call bcsetsc(by,bybdy(ibdry,lblk))
 elseif (magxybc(ibdry,lblk) .eq. 'none') then
c---------do nothing
 elseif ((lnbr .ne. 0) .and.
 % (magxybc(ibdry,lblk) .eq. ' ')) then
 if(procblk(lnbr).eq.myrank) then
 call setnbrb(lnbr)
 kpbxnbr = lpoint(lbx,lnbr)
 kpbynbr = lpoint(lby,lnbr)
c from to range
 call bcpntrs(ibdry,nebr,edge,this,ghst,all,cell)
 call bccpyvf(bxnbr,bynbr,bx,by)
 else
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call rep_2(bx,by,ibdry,1,bdyalcel(ibdry,lblk))
 call rep_3(bx,by,ibdry,1,bdyalcel(ibdry,lblk))
 endif
 else
 call stopm3('rep_1')
 endif
 100 continue

 return
 end
 subroutine rep_2(xt,yt,ibdry,i,bdytype)
 use the_type
 use op_mod
 use bonk3

c-----do receives for necessary sharing of boundary conditions
c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpyvf:
c-----copy npoints values:
c----- from (xf,yf) starting at (isttfrm+nofffrm,jsttfrm)
c----- to (xt,yt) starting at (istttoo+nofftoo,jstttoo)
c----- with spacing nstpfrm and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xt(0:idimtoo,0:jdimtoo,kcells)
 dimension yt(0:idimtoo,0:jdimtoo,kcells)
 integer bdytype

 nbdry = nbrbdy(ibdry,lblk)
 irrqst = irrqst + 1

c******rtag = 1000000*lnbr + 10000*nbdry + 100*i + 3
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 3
 if(i.eq.9) then
 print *,myrank,' bcrcvvf: bdytype =',bdytype
 print *,myrank,' bcrcvvf: rtag =',rtag
 print *,myrank,' bcrcvvf: rcving into xt(',istttoo+nofftoo,',',

46

 % jstttoo,',',2,')'

 endif

 jcom=jcom+1
 icom=icom+1
 if(get_it(irrqst))then
 get_it(irrqst)=bonk
 call MPI_RECV_INIT(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,ar_qst(irrqst),ierror)
c write(*,*)"rtag1=",rtag,irrqst,bdytype,procblk(lnbr)
 call MPI_Address(xt(istttoo+nofftoo,jstttoo,1),
 & mqr(irrqst)%address,ierror)
 mqr(irrqst)%dtype=bdytype
 mqr(irrqst)%proc=procblk(lnbr)
 mqr(irrqst)%tag=rtag
 mqr(irrqst)%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mqr(irrqst)%ext,ierror)

 else
 call MPI_Address(xt(istttoo+nofftoo,jstttoo,1),
 & mtest%address,ierror)
 mtest%dtype=bdytype
 mtest%proc=procblk(lnbr)
 mtest%tag=rtag
 mtest%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mtest%ext,ierror)
 if(mtest .ne. mqr(irrqst))then
 mqr(irrqst)=mtest
c write(*,*)"change at rtag1",irrqst
 call mpi_request_free(ar_qst(irrqst),ierror)
 call MPI_RECV_INIT(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,ar_qst(irrqst),ierror)
 endif
 endif
 call MPI_Start(ar_qst(irrqst),ierror)
 irrqst = irrqst + 1
c******rtag = 1000000*lnbr + 10000*nbdry + 100*i + 4
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 4
 if(i.eq.9) then
 print *,myrank,' bcrcvvf: bdytype =',bdytype
 print *,myrank,' bcrcvvf: rtag =',rtag
 print *,myrank,' bcrcvvf: rcving into yt(',istttoo+nofftoo,',',
 % jstttoo,',',2,')'
 endif
 jcom=jcom+1
 icom=icom+1
 if(get_it(irrqst))then
 get_it(irrqst)=bonk
 call MPI_RECV_INIT(yt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,ar_qst(irrqst),ierror)
c write(*,*)"rtag2=",rtag,irrqst,bdytype,procblk(lnbr)
 call MPI_Address(yt(istttoo+nofftoo,jstttoo,1),
 & mqr(irrqst)%address,ierror)
 mqr(irrqst)%dtype=bdytype
 mqr(irrqst)%proc=procblk(lnbr)
 mqr(irrqst)%tag=rtag
 mqr(irrqst)%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mqr(irrqst)%ext,ierror)
 else
 call MPI_Address(yt(istttoo+nofftoo,jstttoo,1),
 & mtest%address,ierror)
 mtest%dtype=bdytype
 mtest%proc=procblk(lnbr)
 mtest%tag=rtag
 mtest%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mtest%ext,ierror)
 if(mtest .ne. mqr(irrqst))then
 mqr(irrqst)=mtest
c write(*,*)"change at rtag2",irrqst
 call mpi_request_free(ar_qst(irrqst),ierror)

47

 call MPI_RECV_INIT(yt(istttoo+nofftoo,jstttoo,1),1,bdytype,

 % procblk(lnbr),rtag,NEW_COMM_GRAPH,ar_qst(irrqst),ierror)
 endif
 endif
 call MPI_Start(ar_qst(irrqst),ierror)
 return
 end

 subroutine rep_3(xf,yf,ibdry,i,bdytype)
 use the_type
 use op_mod
 use bonk3

c-----do sends for necessary sharing of boundary conditions
c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpyvf:
c-----copy npoints values:
c----- from (xf,yf) starting at (isttfrm+nofffrm,jsttfrm)
c----- to (xt,yt) starting at (istttoo+nofftoo,jstttoo)
c----- with spacing nstpfrm and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xf(0:idimfrm,0:jdimfrm,kcells)
 dimension yf(0:idimfrm,0:jdimfrm,kcells)
 integer bdytype

 isrqst = isrqst + 1
c*****stag = 1000000*lblk + 10000*ibdry + 100*i + 3
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 3
 if(i.eq.9) then
 print *,myrank,' bcsndvf: bdytype =',bdytype
 print *,myrank,' bcsndvf: stag =',stag
 do 10 k = 1,kcells
 print *,myrank,' bcsndvf: snding into xf(',isttfrm+nofffrm,',',
 % jsttfrm,',',k,')',xf(isttfrm+nofffrm,jsttfrm,k)
10 continue
 endif
 jcom=jcom+1
 icom=icom+1
 if(send_it(isrqst))then
 send_it(isrqst)=bonk
 call MPI_SEND_INIT(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)
c write(*,*)"stag1=",stag,isrqst,bdytype,procblk(lnbr)
 call MPI_Address(xf(isttfrm+nofffrm,jsttfrm,1),
 & mqs(isrqst)%address,ierror)
 mqs(isrqst)%dtype=bdytype
 mqs(isrqst)%proc=procblk(lnbr)
 mqs(isrqst)%tag=rtag
 mqs(isrqst)%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mqs(isrqst)%ext,ierror)
 else
 call MPI_Address(xf(isttfrm+nofffrm,jsttfrm,1),
 & mtest%address,ierror)
 mtest%dtype=bdytype
 mtest%proc=procblk(lnbr)
 mtest%tag=rtag
 mtest%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mtest%ext,ierror)
 if(mtest .ne. mqs(isrqst))then

48

 mqs(isrqst)=mtest

c write(*,*)"change at stag1",isrqst
 call mpi_request_free(as_qst(isrqst),ierror)
 call MPI_SEND_INIT(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)
 endif
 endif
 call MPI_Start(as_qst(isrqst),ierror)
 isrqst = isrqst + 1
c*****stag = 1000000*lblk + 10000*ibdry + 100*i + 4
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 4
 if(i.eq.9) then
 print *,myrank,' bcsndvf: bdytype =',bdytype
 print *,myrank,' bcsndvf: stag =',stag
 do 20 k = 1,kcells
 print *,myrank,' bcsndvf: snding into yf(',isttfrm+nofffrm,',',
 % jsttfrm,',',k,')',yf(isttfrm+nofffrm,jsttfrm,k)
20 continue
 endif
 jcom=jcom+1
 icom=icom+1
 if(send_it(isrqst))then
 send_it(isrqst)=bonk
 call MPI_SEND_INIT(yf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)
c write(*,*)"stag2=",stag,isrqst,bdytype,procblk(lnbr)
 call MPI_Address(yf(isttfrm+nofffrm,jsttfrm,1),
 & mqs(isrqst)%address,ierror)
 mqs(isrqst)%dtype=bdytype
 mqs(isrqst)%proc=procblk(lnbr)
 mqs(isrqst)%tag=rtag
 mqs(isrqst)%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mqs(isrqst)%ext,ierror)
 else
 call MPI_Address(yf(isttfrm+nofffrm,jsttfrm,1),
 & mtest%address,ierror)
 mtest%dtype=bdytype
 mtest%proc=procblk(lnbr)
 mtest%tag=rtag
 mtest%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mtest%ext,ierror)
 if(mtest .ne. mqs(isrqst))then
 mqs(isrqst)=mtest
c write(*,*)"change at stag2",isrqst
 call mpi_request_free(as_qst(isrqst),ierror)
 call MPI_SEND_INIT(yf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)
 endif
 endif
 call MPI_Start(as_qst(isrqst),ierror)
 return
 end

 subroutine rep_4(bz)
 use the_type
 use op_mod
 use bonk3

c-----fill non-neighbor boundary ghost cells with bz values

cdir$ nolist
 include 'common.h'
 include 'bccommon.h'
 include 'circom.h'
 include 'inputcom.h'
 include 'pointer.h'
 include 'celcptrs.h'
 include 'parallel.h'
cdir$ list
 dimension bz(0:ip2,0:jp2,kcells)

49

 pointer (kpbznbr , bznbr)

 lbz = lindex(bz)

c-----ghost cell data creation

 do 100 i=1,4
 ibdry = ibzseq(i,lblk)
 lnbr = knbr(ibdry,lblk)

 if (magzbc(ibdry,lblk) .eq. 'conductr') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcxtcsc(bz,rc,bz,rc,1)
 elseif (magzbc(ibdry,lblk) .eq. 'insulatr') then
 if (currcir(ibdry,lblk).eq. 0) then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcxtcsc(bz,rc,bz,rc,1)
c from to range
 call bcpntrs(ibdry,this,ghst,this,ghst,all,cell)
 call bcmltsc(bz,bz,-1.d0)
 else
c from to range
 call bcpntrs(ibdry,none,none,this,ghst,all,cell)
 call bccurnt(current(currcir(ibdry,lblk)),rc,bz,m0,tpi)
 endif
 elseif (magzbc(ibdry,lblk) .eq. 'axis') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcmltsc(bz,bz,-1.d0)
 elseif (magzbc(ibdry,lblk) .eq. 'symmetry') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcxtcsc(bz,rc,bz,rc,1)
 elseif (magzbc(ibdry,lblk) .eq. 'contnutv') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcxtcsc(bz,rc,bz,rc,1)
 elseif (magzbc(ibdry,lblk) .eq. 'specfied') then
c from to range
 call bcpntrs(ibdry,none,none,this,ghst,all,cell)
 call bcsetsc(bz,bzbdy(ibdry,lblk))
 elseif (magzbc(ibdry,lblk) .eq. 'none') then
c---------do nothing
 elseif ((lnbr .ne. 0) .and.
 % (magzbc(ibdry,lblk) .eq. ' ')) then
 if(procblk(lnbr).eq.myrank) then
 call setnbrb(lnbr)
 kpbznbr = lpoint(lbz,lnbr)
c from to range
 call bcpntrs(ibdry,nebr,edge,this,ghst,all,cell)
 call bccpysc(bznbr,bz)
 else
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call rep_5(bz,ibdry,2,bdyalcel(ibdry,lblk))
 call rep_6(bz,ibdry,2,bdyalcel(ibdry,lblk))
 endif
 else
 call stopm3('rep_4')
 endif
 100 continue

 return
 end

 subroutine rep_5(xt,ibdry,i,bdytype)

50

 use the_type

 use op_mod
 use bonk3

c-----copy npoints values from xf starting at (isttfrm+nofffrm,jsttfrm)
c----- to xt starting at (istttoo+nofftoo,jstttoo) with spacing nstpfrm
c----- and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xt(0:idimtoo,0:jdimtoo,kcells)
 integer bdytype

 irrqst = irrqst + 1
 nbdry = nbrbdy(ibdry,lblk)
c*****rtag = 1000000*lnbr + 10000*nbdry + 100*i + 5
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 5
 jcom=jcom+1
 icom=icom+1
 if(get_it(irrqst))then
 get_it(irrqst)=bonk
 call MPI_RECV_INIT(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,ar_qst(irrqst),ierror)
c write(*,*)"rtag3=",rtag,irrqst,bdytype,procblk(lnbr)
 call MPI_Address(xt(istttoo+nofftoo,jstttoo,1),
 & mqr(irrqst)%address,ierror)
 mqr(irrqst)%dtype=bdytype
 mqr(irrqst)%proc=procblk(lnbr)
 mqr(irrqst)%tag=rtag
 mqr(irrqst)%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mqr(irrqst)%ext,ierror)

 else
 call MPI_Address(xt(istttoo+nofftoo,jstttoo,1),
 & mtest%address,ierror)
 mtest%dtype=bdytype
 mtest%proc=procblk(lnbr)
 mtest%tag=rtag
 mtest%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mtest%ext,ierror)
 if(mtest .ne. mqr(irrqst))then
 mqr(irrqst)=mtest
c write(*,*)"change at rtag3",irrqst
 call mpi_request_free(ar_qst(irrqst),ierror)
 call MPI_RECV_INIT(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,ar_qst(irrqst),ierror)
 endif
 endif
 call MPI_Start(ar_qst(irrqst),ierror)
 return
 end

 subroutine rep_6(xf,ibdry,i,bdytype)
 use the_type
 use op_mod
 use bonk3

c-----do sends for necessary sharing of boundary conditions
c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpysc:

51

c-----copy npoints values from xf starting at (isttfrm+nofffrm,jsttfrm)

c----- to xt starting at (istttoo+nofftoo,jstttoo) with spacing nstpfrm
c----- and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xf(0:idimfrm,0:jdimfrm,kcells)
 integer bdytype

 isrqst = isrqst + 1
c*****stag = 1000000*lblk + 10000*ibdry + 100*i + 5
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 5
 jcom=jcom+1
 icom=icom+1
 if(send_it(isrqst))then
 send_it(isrqst)=bonk
 call MPI_SEND_INIT(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)
c write(*,*)"stag3=",stag,isrqst,bdytype,procblk(lnbr)
 call MPI_Address(xf(isttfrm+nofffrm,jsttfrm,1),
 & mqs(isrqst)%address,ierror)
 mqs(isrqst)%dtype=bdytype
 mqs(isrqst)%proc=procblk(lnbr)
 mqs(isrqst)%tag=rtag
 mqs(isrqst)%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mqs(isrqst)%ext,ierror)
 else

 call MPI_Address(xf(isttfrm+nofffrm,jsttfrm,1),
 & mtest%address,ierror)
 mtest%dtype=bdytype
 mtest%proc=procblk(lnbr)
 mtest%tag=rtag
 mtest%com=NEW_COMM_GRAPH
 call MPI_Type_extent(bdytype,mtest%ext,ierror)
 if(mtest .ne. mqs(isrqst))then
 mqs(isrqst)=mtest
c write(*,*)"change at stag3",isrqst
 call mpi_request_free(as_qst(isrqst),ierror)
 call MPI_SEND_INIT(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)
 endif
 endif
 call MPI_Start(as_qst(isrqst),ierror)

c call MPI_ISend(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
c % procblk(lnbr),stag,NEW_COMM_GRAPH,as_qst(isrqst),ierror)

 return
 end

52

 module set_up
 save
 logical , dimension (60,4,8) :: did_it
 data (((did_it(i,j,k),i=1,60),j=1,4),k=1,8) / 1920*.false./
 integer , dimension (60,4,8) :: dress
 data (((dress(i,j,k),i=1,60),j=1,4),k=1,8) / 1920*0/
 integer aray_qst(100)
 integer :: my_reqst = (0)
 integer my_err,test_add
 end module
 subroutine hydbcs

c-----set ghost cell values of p and q according to boundary type
 use time_ray

cdir$ nolist
 include 'common.h'
 include 'bccommon.h'
 include 'inputcom.h'
 include 'pointer.h'
 include 'celcptrs.h'
 include 'parallel.h'
cdir$ list

c-----ghost cell data creation

 irrqst = 0
 isrqst = 0

 do 10 lblk = 1, nblk
 if(procblk(lblk).eq.myrank) then
 call setblk
c-------- Code in this loop DOES not and MUST not reference array elements
 do 100 i=1,4
 ibdry = iproseq(i,lblk)
 lnbr = knbr(ibdry,lblk)

 if (probc(ibdry,lblk) .eq. 'specfied') then
c from to range
 call bcpntrs(ibdry,none,none,this,ghst,all,cell)
 call bcsetvf(p3d,q3d,pflow(ibdry,lblk),zero)
 call bcseti(material,nmatbc(ibdry,lblk))
 call bccpysc(opacr3d,opacr3d)
 elseif (probc(ibdry,lblk) .eq. 'r2extrap') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bcxtcsc(p3d,rc,p3d,rc,2)
 call bcxtcsc(q3d,rc,q3d,rc,2)
 call bccpyi(material,material)
 call bccpysc(opacr3d,opacr3d)
 elseif (probc(ibdry,lblk) .eq. 'contnutv' .or.
 % probc(ibdry,lblk) .eq. 'wall' .or.
 % probc(ibdry,lblk) .eq. 'axis' .or.
 % probc(ibdry,lblk) .eq. 'ablation') then
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call bccpyvf(p3d,q3d,p3d,q3d)
 call bccpysc(opacr3d,opacr3d)
 call bccpyi(material,material)
 elseif (probc(ibdry,lblk) .eq. 'vacuum') then
c********** need to put anything else in to be zeroed for the vacuum stuff?
c from to range
 call bcpntrs(ibdry,none,none,this,ghst,all,cell)
 call bcsetvf(p3d,q3d,zero,zero)
 elseif ((lnbr .ne. 0) .and.
 % (probc(ibdry,lblk) .eq. ' ')) then
 if(procblk(lnbr).eq.myrank) then
 call setnbrb(lnbr)
c from to range

53

 call bcpntrs(ibdry,nebr,edge,this,ghst,all,cell)

 call bccpyvf(p3nbr,q3nbr,p3d,q3d)
 call bccpysc(opacrnbr,opacr3d)
 call bccpyi(matnbr,material)
 else
c from to range
 call bcpntrs(ibdry,this,edge,this,ghst,all,cell)
 call myrecv1(p3d,q3d,ibdry,5,bdyalcel(ibdry,lblk))
 call mysend1(p3d,q3d,ibdry,5,bdyalcel(ibdry,lblk))
 call myrecv2(opacr3d,ibdry,31,bdyalcel(ibdry,lblk))
 call mysend2(opacr3d,ibdry,31,bdyalcel(ibdry,lblk))
 call myrecv3(material,ibdry,32,bdyalceli(ibdry,lblk))
 call mysend3(material,ibdry,32,bdyalceli(ibdry,lblk))
 endif
 else
 call stopm3('hydrobc')
 endif
 100 continue

 endif
10 continue

c-----wait on the receives and sends from the communication
c-----in myrecv2/vf
 call start_timer(51)
c if(irrqst.gt.0) call MPI_Waitall(irrqst,arreqst,status,ierror)
 if(my_reqst.gt.0) call MPI_Waitall(my_reqst,aray_qst,status,ierror)
 call end_timer(51)
 call start_timer(52)
 if(isrqst.gt.0) call MPI_Waitall(isrqst,asreqst,status,ierror)
 call end_timer(52)

c-----finally, treat corners specially

c-----loop over the blocks again for the corners exchange

 irrqst = 0
 isrqst = 0
 do 25 lblk = 1, nblk
 call setblk
 if(procblk(lblk).eq.myrank) then

 do 300 icrnr=1,4
 ldnbr = ldignbr(icrnr,lblk)
 ncrnrs=ncrnrps(icrnr,lblk)
 if(ldnbr .ne. 0) then
c---------copy from diagonal neighbor real corner cell into
c---------this block's ghost corner cell
 call setnbrb(ldnbr)
c from to
 call ccpntrs(icrnr,nebr,edge,0,this,ghst,0,cell)
 if(procblk(ldnbr).eq.myrank) then
 call cccpyvf(p3nbr,q3nbr,p3d,q3d)
 call cccpysc(opacrnbr,opacr3d)
 call cccpyi(matnbr,material)

 else
 icnbr = 0
c from to
 call ccpntrs(icrnr,this,edge,0,this,ghst,0,cell)
 call ccrcvvf(p3d,q3d,icrnr,icnbr,ldnbr)
 call ccsndvf(p3d,q3d,icrnr,ldnbr)
 call ccrcvsc(opacr3d,icrnr,icnbr,ldnbr)
 call ccsndsc(opacr3d,icrnr,ldnbr)
 call ccrcvi(material,icrnr,icnbr,ldnbr)
 call ccsndi(material,icrnr,ldnbr)
 endif
 elseif(ncrnrs .eq. 3 .and. ldnbr .eq. 0) then
c---------special case of a corner with three representations and no

54

c---------diagonal neighbor -- average the neighbor values

c---------to get a unique number
c from to
c call ccavgsc(icrnr,nebr,edge,this,ghst,cell,p3d)
c call ccavgsc(icrnr,nebr,edge,this,ghst,cell,q3d)
c-----The following lines are different from MACH2 (yes, that's *2*)
c-----They only work because of the parallel changes to MACH3 so far
c-----in particular, the boundary conditions are all completed by now.
c from to
 call ccpntrs(icrnr,this,edge,0,this,ghst,0,cell)
 call ccavsc2(p3d,p3d)
 call ccavsc2(q3d,q3d)
 call ccavsc2(opacr3d,opacr3d)
c from to
 call ccpntrs(icrnr,this,edge,0,this,ghst,0,cell)
 call cccpyi(material,material)
 elseif (ncrnrs.eq.2) then
c---------set the data in this ghost corner cell to that of the
c---------neighbor's overlapping ghost cell, and share
 do 350 icnbr = -1,1
 lcnbr = lcrnbr(icnbr,icrnr,lblk)
 if (lcnbr.ne.0) then
 call setnbrb(lcnbr)
 if(procblk(lcnbr).eq.myrank) then
 if(lcnbr.lt.lblk) then
 call ccghset(icrnr,icnbr,.true.,p3nbr,p3d)
 call ccghset(icrnr,icnbr,.true.,q3nbr,q3d)
 call ccghset(icrnr,icnbr,.true.,opacrnbr,opacr3d)
 call ccghiset(icrnr,icnbr,.true.,matnbr,material)
 endif
 else
 call ccghcom(icrnr,icnbr,.true.,p3d,lcnbr,7)
 call ccghcom(icrnr,icnbr,.true.,q3d,lcnbr,2)
 call ccghcom(icrnr,icnbr,.true.,opacr3d,lcnbr,8)
 call ccghicom(icrnr,icnbr,.true.,material,lcnbr,1)
 endif
 endif
350 continue
 endif
300 continue

 endif
25 continue

c-----wait for the receives and sends in the corner communication
 call start_timer(53)
 if(irrqst.gt.0) call MPI_Waitall(irrqst,arreqst,status,ierror)
 call end_timer(53)
 call start_timer(54)
 if(isrqst.gt.0) call MPI_Waitall(isrqst,asreqst,status,ierror)
 call end_timer(54)

 return
 end
 subroutine myrecv1(xt,yt,ibdry,i,bdytype)
 use set_up

c-----do receives for necessary sharing of boundary conditions
c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpyvf:
c-----copy npoints values:
c----- from (xf,yf) starting at (isttfrm+nofffrm,jsttfrm)
c----- to (xt,yt) starting at (istttoo+nofftoo,jstttoo)
c----- with spacing nstpfrm and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'

55

 include 'parallel.h'

cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xt(0:idimtoo,0:jdimtoo,kcells)
 dimension yt(0:idimtoo,0:jdimtoo,kcells)
 integer bdytype

 nbdry = nbrbdy(ibdry,lblk)
c***********************************
c rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 3
c call MPI_IRecv(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
c % procblk(lnbr),rtag,NEW_COMM_GRAPH,arreqst(irrqst),ierror)
 if(did_it(blk,ibdry,1))then
c check to ensure same address
 call MPI_ADDRESS(xt(istttoo+nofftoo,jstttoo,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,1))then
 write(*,*)"address change at ",1
 endif
 else
 did_it(blk,ibdry,1)=.true.
c get the address of the data
 call MPI_ADDRESS(xt(istttoo+nofftoo,jstttoo,1),
 & dress(blk,ibdry,1),my_err)
 write(*,*)"address at ",1,dress(blk,ibdry,1)
c my_reqst++
 my_reqst=my_reqst+1
c set up the recv
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 3

 call MPI_Recv_init(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start recv
 call MPI_START(aray_qst(my_reqst),my_err)
c***********************************

c rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 4
c call MPI_IRecv(yt(istttoo+nofftoo,jstttoo,1),1,bdytype,
c % procblk(lnbr),rtag,NEW_COMM_GRAPH,arreqst(irrqst),ierror)

 if(did_it(blk,ibdry,2))then
c check to ensure same address
 call MPI_ADDRESS(yt(istttoo+nofftoo,jstttoo,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,2))then
 write(*,*)"address change at ",2
 endif
 else
 did_it(blk,ibdry,2)=.true.
c get the address of the data
 call MPI_ADDRESS(yt(istttoo+nofftoo,jstttoo,1),
 & dress(blk,ibdry,2),my_err)
 write(*,*)"address at ",2,dress(blk,ibdry,2)
c my_reqst++
 my_reqst=my_reqst+1
c set up the recv
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 4
 call MPI_Recv_init(yt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start recv
 call MPI_START(aray_qst(my_reqst),my_err)

 return
 end

56

 subroutine mysend1(xf,yf,ibdry,i,bdytype)
 use set_up

c-----do sends for necessary sharing of boundary conditions
c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpyvf:
c-----copy npoints values:
c----- from (xf,yf) starting at (isttfrm+nofffrm,jsttfrm)
c----- to (xt,yt) starting at (istttoo+nofftoo,jstttoo)
c----- with spacing nstpfrm and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xf(0:idimfrm,0:jdimfrm,kcells)
 dimension yf(0:idimfrm,0:jdimfrm,kcells)
 integer bdytype

c stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 3
c call MPI_ISend(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
c % procblk(lnbr),stag,NEW_COMM_GRAPH,asreqst(isrqst),ierror)
 if(did_it(blk,ibdry,3))then
c check to ensure same address
 call MPI_ADDRESS(xf(isttfrm+nofffrm,jsttfrm,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,3))then
 write(*,*)"address change at ",3
 endif
 else
c set up the send
 did_it(blk,ibdry,3)=.true.
c get the address of the data
 call MPI_ADDRESS(xf(isttfrm+nofffrm,jsttfrm,1),
 & dress(blk,ibdry,3),my_err)
 write(*,*)"address at ",3,dress(blk,ibdry,3)
c my_reqst++
 my_reqst=my_reqst+1
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 3

 call MPI_Send_init(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start send
 call MPI_START(aray_qst(my_reqst),my_err)

c stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 4
c call MPI_ISend(yf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
c % procblk(lnbr),stag,NEW_COMM_GRAPH,asreqst(isrqst),ierror)
 if(did_it(blk,ibdry,4))then
c check to ensure same address
 call MPI_ADDRESS(yf(isttfrm+nofffrm,jsttfrm,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,4))then
 write(*,*)"address change at ",4
 endif
 else
c set up the send
 did_it(blk,ibdry,4)=.true.
c get the address of the data
 call MPI_ADDRESS(yf(isttfrm+nofffrm,jsttfrm,1),
 & dress(blk,ibdry,4),my_err)

57

 write(*,*)"address at ",4,dress(blk,ibdry,4)

c my_reqst++
 my_reqst=my_reqst+1
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 4

 call MPI_Send_init(yf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start send
 call MPI_START(aray_qst(my_reqst),my_err)

 return
 end

 subroutine myrecv2(xt,ibdry,i,bdytype)
 use set_up

c-----copy npoints values from xf starting at (isttfrm+nofffrm,jsttfrm)
c----- to xt starting at (istttoo+nofftoo,jstttoo) with spacing nstpfrm
c----- and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xt(0:idimtoo,0:jdimtoo,kcells)
 integer bdytype

 irrqst = irrqst + 1
 nbdry = nbrbdy(ibdry,lblk)
 if(did_it(blk,ibdry,5))then
c check to ensure same address
 call MPI_ADDRESS(xt(istttoo+nofftoo,jstttoo,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,5))then
 write(*,*)"address change at ",5
 endif
 else
c set up the recv
 did_it(blk,ibdry,5)=.true.
c get the address of the data
 call MPI_ADDRESS(xt(istttoo+nofftoo,jstttoo,1),
 & dress(blk,ibdry,5),my_err)
 write(*,*)"address at ",5,dress(blk,ibdry,5)
c my_reqst++
 my_reqst=my_reqst+1
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 5

 call MPI_Recv_init(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start send
 call MPI_START(aray_qst(my_reqst),my_err)

c rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 5
c call MPI_IRecv(xt(istttoo+nofftoo,jstttoo,1),1,bdytype,
c % procblk(lnbr),rtag,NEW_COMM_GRAPH,arreqst(irrqst),ierror)

 return
 end

 subroutine mysend2(xf,ibdry,i,bdytype)
 use set_up

58

c-----do sends for necessary sharing of boundary conditions

c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpysc:
c-----copy npoints values from xf starting at (isttfrm+nofffrm,jsttfrm)
c----- to xt starting at (istttoo+nofftoo,jstttoo) with spacing nstpfrm
c----- and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 dimension xf(0:idimfrm,0:jdimfrm,kcells)
 integer bdytype

c stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 5
c call MPI_ISend(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
c % procblk(lnbr),stag,NEW_COMM_GRAPH,asreqst(isrqst),ierror)
 if(did_it(blk,ibdry,6))then
c check to ensure same address
 call MPI_ADDRESS(xf(isttfrm+nofffrm,jsttfrm,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,6))then
 write(*,*)"address change at ",6
 endif
 else
c set up the send
 did_it(blk,ibdry,6)=.true.
c get the address of the data
 call MPI_ADDRESS(xf(isttfrm+nofffrm,jsttfrm,1),
 & dress(blk,ibdry,6),my_err)
 write(*,*)"address at ",6,dress(blk,ibdry,6)
c my_reqst++
 my_reqst=my_reqst+1
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 5

 call MPI_Send_init(xf(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start send
 call MPI_START(aray_qst(my_reqst),my_err)

 return
 end

 subroutine myrecv3(iit,ibdry,i,bdytype)
 use set_up

c-----copy npoints values from xf starting at (isttfrm+nofffrm,jsttfrm)
c----- to iit starting at (istttoo+nofftoo,jstttoo) with spacing nstpfrm
c----- and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 integer iit(0:idimtoo,0:jdimtoo,kcells)
 integer bdytype

59

 irrqst = irrqst + 1
 nbdry = nbrbdy(ibdry,lblk)
c*****rtag = 1000000*lnbr + 100000*nbdry + 100*i + 9
c rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 0
c call MPI_IRecv(iit(istttoo+nofftoo,jstttoo,1),1,bdytype,
c % procblk(lnbr),rtag,NEW_COMM_GRAPH,arreqst(irrqst),ierror)
 if(did_it(blk,ibdry,7))then
c check to ensure same address
 call MPI_ADDRESS(iit(istttoo+nofftoo,jstttoo,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,7))then
 write(*,*)"address change at ",7
 endif
 else
c set up the recv
 did_it(blk,ibdry,7)=.true.
c get the address of the data
 call MPI_ADDRESS(iit(istttoo+nofftoo,jstttoo,1),
 & dress(blk,ibdry,7),my_err)
 write(*,*)"address at ",7,dress(blk,ibdry,7)
c my_reqst++
 my_reqst=my_reqst+1
 rtag = (mxmsgbd*(lnbr-1) + (nbdry-1)) * mxmsgid + 0

 call MPI_Recv_init(iit(istttoo+nofftoo,jstttoo,1),1,bdytype,
 % procblk(lnbr),rtag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start send
 call MPI_START(aray_qst(my_reqst),my_err)

 return
 end

 subroutine mysend3(iif,ibdry,i,bdytype)
 use set_up

c-----do sends for necessary sharing of boundary conditions
c-----among the different processors. Only should be done if
c-----the neighbor block of the current block does not belong
c-----to the processor. Otherwise, it uses everything the same
c-----as bccpysc:
c-----copy npoints values from iif starting at (isttfrm+nofffrm,jsttfrm)
c----- to xt starting at (istttoo+nofftoo,jstttoo) with spacing nstpfrm
c----- and nstptoo respectively

cdir$ nolist
 include 'common.h'
 include 'ptrcom.h'
 include 'parallel.h'
cdir$ list

 common /bcpoint/ idimfrm,jdimfrm,isttfrm,jsttfrm,nstpfrm,nofffrm,
 % idimtoo,jdimtoo,istttoo,jstttoo,nstptoo,nofftoo,
 % npoints
 integer iif(0:idimfrm,0:jdimfrm,kcells)
 integer bdytype

c stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 0
c call MPI_ISend(iif(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
c % procblk(lnbr),stag,NEW_COMM_GRAPH,asreqst(isrqst),ierror)
 if(did_it(blk,ibdry,8))then
c check to ensure same address
 call MPI_ADDRESS(iif(isttfrm+nofffrm,jsttfrm,1),
 & test_add,my_err)
 if(test_add .ne. dress(blk,ibdry,8))then
 write(*,*)"address change at ",8
 endif

60

 else

c set up the send
 did_it(blk,ibdry,8)=.true.
c get the address of the data
 call MPI_ADDRESS(iif(isttfrm+nofffrm,jsttfrm,1),
 & dress(blk,ibdry,8),my_err)
 write(*,*)"address at ",8,dress(blk,ibdry,8)
c my_reqst++
 my_reqst=my_reqst+1
 stag = (mxmsgbd*(lblk-1) + (ibdry-1)) * mxmsgid + 0

 call MPI_Send_init(iif(isttfrm+nofffrm,jsttfrm,1),1,bdytype,
 % procblk(lnbr),stag,NEW_COMM_GRAPH,aray_qst(my_reqst),my_err)
 endif
c start send
 call MPI_START(aray_qst(my_reqst),my_err)

 return
 end

61

Appendix 3. Fortran 90 dynamic memory management routine based on a splay tree.
module numz
 integer, public,parameter:: b8 = selected_real_kind(14)
end module numz

module mem_stuff
 private :: deletemin,add,splay,inorder,inarray,delete,find,rf,summary
 public :: fmalloc, ffree, fquery, fdump
 type, public :: tree
 integer :: key
 integer :: item
 integer, pointer,dimension(:) :: the_data
 type (tree), pointer :: parent, left, right
 end type tree
 type (tree), private,save, pointer :: root
 logical,private, save :: need_init = .true.
contains
 subroutine deletemin (root, item)
 type (tree), pointer :: root
 integer, intent (inout) :: item
 type (tree), pointer :: p
 if (.not. associated(root)) then
 item = - 1
 else
 p => root
 do
 if(.not.(associated(p%left)))then
 exit
 end if
 p => p%left
 end do
 item = p%item
 call splay (p)
 root => p%right
 deallocate (p%the_data)
 nullify (p)
 if (associated(root))then
 nullify (root%parent)
 endif
 end if
 end subroutine deletemin
 subroutine add (key, item, root)
 use numz
 integer, intent (in) :: item
 integer, intent (out) :: key
 type (tree), pointer :: root
 integer :: ierr, isize, int_size
 type (tree), pointer :: p, current, next
!walt real(kind=b8) :: bonk
 allocate (p)
 nullify (p%left)
 nullify (p%right)
 nullify (p%parent)
 nullify (p%the_data)
 inquire (iolength=int_size) item
 isize = ceiling (real(item)/real(int_size))
 allocate (p%the_data(isize), stat=ierr)
 if (ierr == 0) then
!walt call random_number(bonk)
!walt key=(2**25)*bonk
 key = loc (p%the_data(1))
 else
 key = - 1
 endif
 p%key = key

62

 p%item = int_size * isize

 if (.not. associated(root)) then
 root => p
 else
 next => root
 do
 current => next
 if (key <= current%key) then
 next => current%left
 else
 next => current%right
 endif
 if (.not. associated(next)) then
 exit
 endif
 end do
 p%parent => current
 if (key <= current%key) then
 current%left => p
 else
 current%right => p
 endif
 call splay (p)
 root => p
 endif
 end subroutine add
 subroutine find (key, root,find_f)
 type (tree), pointer :: root
 integer, intent (in) :: key
 logical,intent(out) :: find_f
 type (tree), pointer :: current, next
 if (.not. associated(root)) then
 find_f = .false.
 return
 endif
 next => root
 do
 current => next
 if (key /= current%key) then
 if (key <= current%key) then
 next => current%left
 else
 next => current%right
 endif
 endif
 if ((.not. associated(next)) .or. (key == current%key)) then
 exit
 endif
 end do
 if (.not. associated(next)) then
 find_f = .false.
 call splay (current)
 root => current
 else
 call splay (current)
 root => current
 find_f = .true.
 endif
 end subroutine find
 subroutine splay (p)
 type (tree), pointer :: p
 type (tree), pointer :: parent, grand
 do
 if (.not. associated(p%parent))then
 exit
 endif
 parent => p%parent
 if (associated(parent%left, p)) then
 if (.not. associated(parent%parent)) then
 nullify (p%parent)

63

 parent%parent => p

 parent%left => p%right
 if (associated(parent%left))then
 parent%left%parent =>parent
 endif
 p%right => parent
 else
 grand => parent%parent
 p%parent => grand%parent
 if (associated(grand%parent)) then
 if (associated(grand%parent%left, grand)) then
 grand%parent%left => p
 else
 grand%parent%right => p
 endif
 endif
 parent%parent => p
 parent%left => p%right
 if (associated(parent%left)) then
 parent%left%parent =>parent
 endif
 p%right => parent
 if (associated(grand%left, parent)) then
 grand%parent => parent
 grand%left => parent%right
 if (associated(grand%left))then
 grand%left%parent =>grand
 endif
 parent%right => grand
 else
 grand%parent => p
 grand%right => p%left
 if (associated(grand%right))then
 grand%right%parent =>grand
 endif
 p%left => grand
 endif
 endif
 else
 if (.not. associated(parent%parent)) then
 nullify (p%parent)
 parent%parent => p
 parent%right => p%left
 if (associated(parent%right)) then
 parent%right%parent => parent
 endif
 p%left => parent
 else
 grand => parent%parent
 p%parent => grand%parent
 if (associated(grand%parent)) then
 if (associated(grand%parent%left, grand)) then
 grand%parent%left => p
 else
 grand%parent%right => p
 endif
 endif
 parent%parent => p
 parent%right => p%left
 if (associated(parent%right)) then
 parent%right%parent =>parent
 endif
 p%left => parent
 if (associated(grand%right, parent)) then
 grand%parent => parent
 grand%right => parent%left
 if (associated(grand%right)) then
 grand%right%parent =>grand
 endif
 parent%left => grand

64

 else

 grand%parent => p
 grand%left => p%right
 if (associated(grand%left))then
 grand%left%parent =>grand
 endif
 p%right => grand
 endif
 endif
 endif
 end do
 end subroutine splay
 recursive subroutine inorder (root)
 type (tree), pointer :: root
 if (associated(root)) then
 call inorder (root%left)
 print *, root%item, root%key
 call inorder (root%right)
 endif
 end subroutine inorder
 recursive subroutine inarray (root, index_it, array, imax)
 type (tree), pointer :: root
 integer, intent (inout) :: index_it, imax
 integer, intent (inout),dimension(:,:) :: array
 if (associated(root)) then
 call inarray (root%left, index_it, array, imax)
 index_it = index_it + 1
 if (index_it <= imax) then
 array (index_it, 1) = root%item
 array (index_it, 2) = root%key
 endif
 call inarray (root%right, index_it, array, imax)
 endif
 end subroutine inarray
 subroutine delete (root, key)
 type (tree), pointer :: root
 integer, intent (inout) :: key
 type (tree), pointer :: left, rite, temp
 logical :: exists
 call find (key, root,exists)
 if (.not. exists) then
 print *, "does not exist"
 return
 endif
 if (.not. associated(root%left)) then
 if (.not. associated(root%right)) then
 deallocate (root%the_data)
 nullify (root)
 ! print *, "empty tree"
 return
 endif
 call deletemin (root, key)
 return
 endif
 if (.not. associated(root%right)) then
 temp => root%left
 deallocate (root%the_data)
 nullify (root)
 root => temp
 nullify (root%parent)
 return
 endif
 left => root%left
 rite => root%right
 deallocate (root%the_data)
 nullify (root)
 nullify (left%parent)
 nullify (rite%parent)
 root => left
 call find (key, root,exists)

65

 rite%parent => root

 root%right => rite
 end subroutine delete
 recursive function rf (root) result (count_it)
 type (tree), pointer :: root
 integer :: count_it
 count_it = 0
 if (associated(root)) then
 count_it = 1 + rf (root%right) + rf (root%left)
 endif
 end function rf
 recursive function summary (root) result (count_it)
 type (tree), pointer :: root
 integer :: count_it
 count_it = 0
 if (associated(root)) then
 count_it = root%item + summary (root%right) + summary(root%left)
 endif
 end function summary
!func function fmalloc (isize) result (f_fmalloc)
 subroutine fmalloc (isize,f_fmalloc)
 integer,intent (in) :: isize
 integer,intent (out) :: f_fmalloc
 integer :: mysize, key
 mysize = isize
 if (need_init) then
 nullify (root)
 need_init = .false.
 endif
 call add (key, mysize, root)
 f_fmalloc = key
!func end function fmalloc
 end subroutine fmalloc
!func function ffree (path) result(f_ffree)
 subroutine ffree (path,f_ffree)
 integer,intent (inout) :: path
 integer,intent(out) :: f_ffree
 logical :: exists
 call find (path, root,exists)
 if (exists) then
 call delete (root, path)
 f_ffree = 0
 else
 f_ffree = - 1
 endif
!func end function ffree
 end subroutine ffree
 subroutine fquery (number, sum_it)
 integer,intent (inout) :: number, sum_it
 number = rf (root)
 sum_it = summary (root)
 end subroutine fquery
 subroutine fdump (data_base, elements)
 integer,intent (inout) :: elements
 integer,intent (inout) ,dimension(:,:) :: data_base
 integer :: icount_it
 icount_it = 0
 call inarray (root, icount_it, data_base, elements)
 end subroutine fdump
end module mem_stuff
program splayit
 use numz
 use mem_stuff
 implicit none
 integer :: i_bonk (100)
 real(kind=b8) :: r_bonk (100)
 pointer (cp, i_bonk)
 pointer (rp, r_bonk)
 integer :: i, length, bytes
 integer :: item, command, path

66

 integer :: elements, total

 logical :: exists
 integer :: imax
 integer :: key
 integer :: ijk,iterations,add_size,add_number,ierr
 integer, allocatable,dimension (:, :) :: data_base
 real(kind=b8) :: x
 integer :: int_size, real_size
 inquire (iolength=int_size) i
 inquire (iolength=real_size) x
 imax = 10
 do i = 1, imax
 length = 10
 bytes = length * int_size
!func key = fmalloc (bytes)
 call fmalloc(bytes,key)
 print *, "address for integer array", key, " of ", length," elements"
 cp = key
 i_bonk (1:length) = i
 length = 4
 bytes = length * real_size
!func key = fmalloc (bytes)
 call fmalloc(bytes,key)
 print *, "address for real array", key, " of ", length, " elements"
 rp = key
 r_bonk (1:length) = i
 end do
 do
 print *, "0-stop"
 print *, "1-add integer array"
 print *, "2-add real array"
 print *, "3-free"
 print *, "4-get info"
 print *, "5-show integer array"
 print *, "6-show real array"
 print *, "7-run test"
 read *, command
 select case (command)
 case (0)
 stop
 case (1)
 print *, "enter array size"
 read *, length
 bytes = length * int_size
!func key = fmalloc (bytes)
 call fmalloc(bytes,key)
 print *, "starting address of block=", key
 print *, "enter value for block of data"
 read *, i
 cp = key
 i_bonk (1:length) = i
 case (2)
 print *, "enter array size"
 read *, length
 bytes = length * real_size
!func key = fmalloc (bytes)
 call fmalloc(bytes,key)
 print *, "starting address of block=", key
 print *, "enter value for block of data"
 read *, x
 rp = key
 r_bonk (1:length) = x
 case (3)
 print *, "enter address"
 read *, path
!func i = ffree (path)
 call ffree(path,i)
 print *, "error code=", i
 case (4)
 call fquery (elements, total)

67

 print *, "count=", elements, total

 allocate (data_base(elements, 2))
 call fdump (data_base, elements)
 do i = 1, elements
 print *, data_base (i, 1), data_base (i, 2)
 end do
 deallocate (data_base)
 case (5)
 print *, "enter address and # elements"
 read *, key, length
 cp = key
 print *, i_bonk (1:length)
 case (6)
 print *, "enter address and # elements"
 read *, key, length
 rp = key
 print *, r_bonk (1:length)
 case (7)
 print *,"iterations,add_size,add_number"
 read *, iterations,add_size,add_number
 do ijk=1,iterations
 print *,"iteration=",ijk
 call fquery (elements, total)
 allocate (data_base(elements, 2))
 call fdump (data_base, elements)
 do i = 1, elements
!func ierr = ffree (data_base (i, 2))
 call ffree(data_base(i,2),ierr)
 print *,"ierr=",ierr
 end do
 deallocate (data_base)
 length = add_size
 do i = 1, add_number
 bytes = length * int_size
!func key = fmalloc (bytes)
 call fmalloc(bytes,key)
 print *, "address for integer array", key, " of ", length,"

integers"
 end do
 end do

 end select
 end do
end program splayit

68

References

Moret,B. and Shapiro, H. (1991). Algorithms from P to NP, Volume 1, Design and Efficiency.

Redwood City CA: Benjamin/Cummings.

OpenMP Architecture Review Board. (1999). OpenMP Fortran Application Program Interface

Version 1.1. www.openmp.org.

Peterkin, R., Jr., Frese M. (1998). MACH: A Reference Manual - First Edition. Air Force

Research Laboratory-Phillips Research Site, Kirtland AFB NM.

Peterkin, R., Jr., Roderick, N., Colella, S., Lileikis, D. (1999). Three-dimensional hydromagnetic

simulation of a high-velocity gas-puff Z-pinch. IEEE Transactions on Plasma Science, 27, 118

-119.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D. Dongarra, J. (1996). MPI: The Complete

Reference. Cambridge MA: MIT Press.

69

